Project description:Metabolomics and transcriptomics of Bradyrhizobium diazoefficiens-induced root nodules Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection -time of flight mass spectrometry analysis the metabolome of i) nodules and roots from four different B. diazoefficiens host plants, ii) soybean nodules harvested at different time points during nodule development, and iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by transcriptomics data that was generated for the two mutant strains and were helpful to separate for some examples the respective bacterial and plant contributions to the metabolic profile. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.
Project description:Nuclei were isolated from soybean root nodules and proteins were purified. Trypsin digests from two preparations were analyzed by LC-MS/MS. GmFWL3, a member of the soybean GmFWL/CNR family, was identified. It encodes a microdomain-associated protein localized in both the nuclear and plasma membranes that regulates nodulation.
Project description:part of GSE8478: Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules This SuperSeries is composed of the SubSeries listed below.
Project description:Expression data from B. japonicum soybean root nodules including a nodulation time-course experiment with soybean nodules harvested at 10, 13, 21 and 31 dpi and transcriptome of bacteroids formed by a mutant defective in the RNA polymerase transcription factor sigma 54. Two reference data sets were established using B. japonicum cells grown in PSY medium under either aerobic or micro-aerobic conditions. Keywords: genetic modification, time course, growth conditions
Project description:In agroecosystems, a plant-usable form of nitrogen is mainly generated by legume-based biological nitrogen fixation, a process that requires phosphorus (P) as an essential nutrient. To investigate the physiological mechanism whereby phosphorus influences soybean nodule nitrogen fixation, soybean root nodules were exposed to four phosphate levels: 1 mg/L (P stress), 11 mg/L (P stress), 31 mg/L (Normal P), 61 mg/L (High P) then proteome analysis of nodules was conducted to identify phosphorus-associated proteome changes. We found that phosphorus stress-induced ribosomal protein structural changes were associated with altered key root nodule protein synthesis profiles. Importantly, up-regulated expression of peroxidase was observed as an important phosphorus stress-induced nitrogen fixation-associated adaptation that supported two nodule-associated activities: scavenging of reactive oxygen species (ROS) and cell wall growth. In addition, phosphorus transporter (PT) and purple acid phosphatase (PAPs) were up-regulated that regulated phosphorus transport and utilisation to maintain phosphorus balance and nitrogen fixation function in phosphorus-stressed root nodules.
Project description:To dissect differences in gene expression profile of soybean roots and root nodules, we have employed microarray analysis. Seeds of soybean (Glycine max L. cv. Nourin No. 2) were inoculated with rhizobia (Bradyrhizobium diazoefficiens USDA110) and were hydroponically cultivated under controlled conditions with nitrogen free culture solution (Saito et al. 2014). At 19 days after planting, each plant were treated with or without 5 mM nitrate for 24 hours. Roots and nodules from three plants were pooled with three biological replications, and total RNA was extracted.