Project description:Type I interferon (IFN-α/β) is the first line of defense against viral infection. Mouse models have been pivotal to our understanding of IFN-α/β in immunity, although validation of these findings in humans has not been possible. We investigated a previously healthy child with fatal susceptibility to the live-attenuated measles, mumps and rubella (MMR) vaccine. By targeted resequencing we identified a homozygous mutation in the high-affinity interferon-α/β receptor (IFNAR2), which rendered cells unresponsive to IFN-α/β and led to unrestricted replication of IFN-attenuated viruses. Reconstitution of patient cells with wild-type IFNAR2 restored IFN-α/β responsiveness and viral resistance. Despite the failure to control vaccine viruses, the patient showed no evidence of susceptibility to conventional viral pathogens in vivo and adaptive immunity appeared normal. Human IFNAR2 deficiency therefore reveals an essential role for IFN-α/β in resistance to attenuated viruses, but significant and unexpected redundancy overall in antiviral immunity. Total RNA isolated from IFNAR2-deficient patient (in triplicate) and control (three independent control lines) fibroblasts treated with IFNalpha, IFNbeta or IFNgamma (1000 IU/mL) for 10h
Project description:Type I interferon (IFN-α/β) is the first line of defense against viral infection. Mouse models have been pivotal to our understanding of IFN-α/β in immunity, although validation of these findings in humans has not been possible. We investigated a previously healthy child with fatal susceptibility to the live-attenuated measles, mumps and rubella (MMR) vaccine. By targeted resequencing we identified a homozygous mutation in the high-affinity interferon-α/β receptor (IFNAR2), which rendered cells unresponsive to IFN-α/β and led to unrestricted replication of IFN-attenuated viruses. Reconstitution of patient cells with wild-type IFNAR2 restored IFN-α/β responsiveness and viral resistance. Despite the failure to control vaccine viruses, the patient showed no evidence of susceptibility to conventional viral pathogens in vivo and adaptive immunity appeared normal. Human IFNAR2 deficiency therefore reveals an essential role for IFN-α/β in resistance to attenuated viruses, but significant and unexpected redundancy overall in antiviral immunity.
Project description:Comparison of the transcriptiomic profile using microarray analysis betwween primary porcine macrophages infected with recombinant vesicular stomatitis viruses
Project description:Chicken brain and lung gene expression profiles following infection with two recombinant H5N3 avian influenza viruses - rH5N3 Ori (P0) and rH5N3 P6
2017-03-22 | GSE96837 | GEO
Project description:SMRT sequencing of recombinant influenza A viruses