Project description:Infectious hematopoietic necrosis virus (IHNV) is a virus of the genus Novirhabdovirus and the causative agent of infectious hematopoietic necrosis (IHN), one of the most serious threats to salmonid fishes. IHN outbreaks can cause more than 80% mortality rates in certain cases. Studying the transcriptional responses to the secondary immunization with a live attenuated IHNV vaccine will help us understand how fish previously immunized respond when they encounter again the same pathogen and how effective this type of vaccination is.This experiment was aimed at understanding the transcriptomic response of rainbow trout to an IHNV secondary nasal vaccination.
Project description:Rainbow trout (Oncorhynchus mykiss) is one of the economically important cold-water fish cultivated in the world. The outbreak of infectious hematopoietic necrosis (IHN) seriously restricted the development of rainbow trout farming industry and caused huge economic losses. Fish skin is the largest mucosal immune organ, providing the first line of defense against pathogen invasion. However, the immune mechanisms associated with fish skin remain unclear. To systematically identify skin mucosal immune genes induced by infectious hematopoietic necrosis virus (IHNV) infection, trout transcriptome profiles following IHNV challenge were examined. Transcriptome analysis identified 6905 differentially expressed genes (DEGs) and revealed numerous immune-related DEGs involved in cytokine-cytokine receptor interactions, NOD-like receptor signaling, RIG-I-like receptor signaling, Toll-like receptor signaling, JAK-STAT signaling, Chemokine signaling pathway, and TNF signaling pathway, and the expression of these DEGs was significantly up-regulated in T48Skm group, including NOD1, NLRC3, NLRC5, TLR3, TLR7/8, TRIM25, DHX58, IFIH1, IRF3/7, STAT1, TRAF3, MX1, and HSP90A1. Additionally, highly interactive DEGs network involving immune-related terms and pathways was shown using protein-protein interaction network. The expression patterns of 12 DEGs were further verified by quantitative real-time PCR, which confirmed the reproducibility and reliability of transcriptome sequencing data. These findings expand our understanding of the innate immune system of rainbow trout skin infected with IHNV, and lay a foundation for further studies of the immune molecular mechanism and disease resistance breeding.
Project description:To obtain the site-by-site methylation landscape of the infectious spleen and kidney necrosis virus (ISKNV) genome, whole-genome bisulfite sequencing (WGBS) was performed on an ISKNV strain from 3 duplicate samples.
Project description:To characterise the transcriptional response in brain of Sockeye Salmon (Oncorhynchus nerka) that were persistently infected with infectious hematopoietic necrosis virus (IHNV) and to determine whether carrying the IHNV affects the ability to respond to other immunological challenges we compared the brain transcriptome of IHNV carriers, IHNV-negative survivors, and naïve Sockeye Salmon that were never exposed to IHNV. In addition we determined the transcriptional changes among carriers, survivors and naïve fish in their response to the viral mimic polyriboinosinic polyribocytidylic acid (poly(I:C)), using the cGRASP 44K salmon oligoarray.
Project description:Susceptibility of pike Esox lucius to viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus and potential transmission to rainbow trout Oncorhynchus mykiss