Project description:Two new drimane sesquiterpene lactones and one new tricarboxylic acid derivative were isolated from the Berkeley Pit extremophilic fungus Penicillium solitum. The structures of these compounds were deduced by spectroscopic analysis. Berkedrimanes A and B inhibited the signal transduction enzymes caspase-1 and caspase-3 and mitigated the production of interleukin 1-? in the induced THP-1 (pro-monocytic leukemia cell line) assay.
Project description:Potato is one of the highly consumed vegetable crop grown in different regions across Pakistan that is affected by fungal diseases. The current research was conducted to identify fungal pathogen causing mold-like disease of potato in Khyber Pakhtunkhwa (KP), Pakistan. For molecular identification and characterization of the fungal disease; potato tuber samples were collected followed by culturing on potato dextrose agar (PDA). Based on morphological features, the pathogen was identified as a Penicillium species. This result was obtained in 45 different isolates from potato tubers. Molecular identification was done using β-tubulin primers and ITS5 sequencing of 13 different isolates that releveled 98% homology with BLAST (GenBank accession no. KX958076) as Penicillium solitum (GenBank accession nos. ON307317; ON307475 and ON310801). Phylogenetic tree was constructed that showed Penicillium solitum prevalence along with Penicillium polonicum and Penicillium citrinum on potato tubers. Based on this, Penicillium solitum based silver nanoparticles (Ag NPs) were synthesized and characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray (EDX) and field emission scanning electron microscopy (FE SEM). UV-analysis showed a characteristic peak at 410 nm confirming synthesis of Penicillium solitum based Ag NPs. This was further confirmed by XRD followed by EDX and SEM that showed face cubic crystal structure with Ag as major constituent of 18 nm formed spherical Ag NPs. FTIR showed band stretching of O-H, N-O and C-H of biological origin. Similarly, Penicillium solitum based Ag NPs presented strong anti-bacterial and anti-fungal activity at 0.5 level of significance LSD. According to our knowledge, this is the first report of Penicillium solitum identification in Pakistan, its Ag NPs synthesis and characterization to be used against pathogens of agricultural significance.
Project description:Penicillium digitatum is the pathogen of Green mold in Postharvest citrus. After inoculating Penicillium digitatum into the wound of citrus to infect it, transcriptome sequencing was carried out and compared with the results of transcriptome sequencing of Penicillium digitatum before inoculation in order to screen the differentially expressed genes and reveal its infection mechanism.
Project description:Bull’s eye rot is one of the most severe diseases that may affect apples during storage. It is caused by the fungus Neofabraea vagabunda, and the mechanism by which the pathogen infects the fruits is only partially understood. In particular, very little is known about the molecular mechanisms regulating the interaction between the pathogen and the host during symptoms development. Despite different apple cultivars show different levels of resistance to the pathogen, the genetic basis of these responses are unknown. In order to understand the molecular mechanisms occurring in the apple fruit during N. vagabunda infection, a large-scale transcriptome study by RNA-Seq analysis was performed, comparing fruits of the sensitive ‘Roho’ cultivar and the resistant cultivar ‘Ariane’ after artificial infection with N. vagabunda and a storage period of 4 months.