Project description:Rhizoctonia solani Kühn is a soilborne basidiomycetous fungus that causes significant damage to many economically important crops. R. solani isolates are classified into 13 Anastomosis Groups (AGs) with interspecific subgroups having distinctive morphology, pathogenicity and wide host range. However, the genetic factors that drive the unique fungal pathology are still not well characterized due to the limited number of available annotated genomes. Therefore, we performed genome sequencing, assembly, annotation and functional analysis of 13 R. solani isolates covering 7 AGs and selected subgroups (AG1-IA, AG1-IB, AG1-IC, AG2-2IIIB, AG3-PT, AG3-TB, AG4-HG-I, AG5, AG6, and AG8). Here, we report a pangenome comparative analysis of 13 R. solani isolates covering important groups to elucidate unique and common attributes associated with each isolate, including molecular factors potentially involved in determining AG-specific host preference. Finally, we present the largest repertoire of annotated R. solani genomes, compiled as a comprehensive and user-friendly database, viz. RsolaniDB. Since 7 genomes are reported for the first time, the database stands as a valuable platform for formulating new hypotheses by hosting annotated genomes, with tools for functional enrichment, orthologs and sequence analysis, currently not available with other accessible state-of-the-art platforms hosting Rhizoctonia genome sequences.
Project description:We performed whole genome sequencing on four isolates of C. jejuni, two of which were closely related phylogenetically while the remaining two were phylogenetically divergent. Genomes were closed and finished. 4-plex iTRAQ experiments were performed on the four isolates after growth on solid medium for a standard time. The research questions were: 1) how closely do the protein profiles match among the four isolates, and 2) were there any results consistent with differences in regulation among isolates.
Project description:Serratia marcescens, a member of the order Enterobacterales, is adept at colonizing healthcare environments and an important cause of invasive infections. Antibiotic resistance is a daunting problem in S. marcescens because in addition to plasmid-mediated mechanisms, most isolates have considerable intrinsic resistance to multiple antibiotic classes. To discover endogenous modifiers of antibiotic susceptibility in S. marcescens, a high-density transposon insertion library was subjected to sub-minimal inhibitory concentrations of two cephalosporins, cefoxitin and cefepime, as well as the fluoroquinolone ciprofloxacin. Comparisons of transposon insertion abundance before and after antibiotic exposure identified hundreds of potential modifiers of susceptibility to these agents. Using single gene deletions, we validated several candidate modifiers of cefoxitin susceptibility and chose ydgH, a gene of unknown function, for further characterization. In addition to cefoxitin, deletion of ydgH in S. marcescens resulted in decreased susceptibility to multiple 3rd generation cephalosporins, and in contrast, to increased susceptibility to both cationic and anionic detergents. YdgH is highly conserved throughout the Enterobacterales, and we observed similar phenotypes in Escherichia coli O157:H7 and Enterobacter cloacae mutants. YdgH is predicted to localize to the periplasm and we speculate that it may be involved there in cell envelope homeostasis. Collectively, our findings provide insight into chromosomal mediators of antibiotic resistance in S. marcescens and will serve as a resource for further investigations of this important pathogen.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Leishmania donovani WHO reference strain MHOM/IN/80/DD8 and Leptomonas seymouri isolates Ld 2001 and Ld39 were used for proteome analysis which were originally isolated from clinical cases of kala azar patients with different inherent antimonial sensitivities. Ld 2001 was Sb-S and Ld 39 was Sb-R. The genome sequencing of these isolates had confirmed co-infection with Leptomonas.
Project description:Despite high vaccination coverage, pertussis is on the rise in many countries including Czech Republic. To better understand B. pertussis resurgence we compared the changes in genome structures between Czech vaccine and circulating strains and subsequently, we determined how these changes translated into global transcriptomic and proteomic profiles. The whole-genome sequencing revealed that both historical and recent isolates of B. pertussis display substantial variation in genome organization and cluster separately. The RNA-seq and LC-MS/MS analyses indicate that these variations translated into discretely separated transcriptomic and proteomic profiles. Compared to vaccine strains, recent isolates displayed increased expression of flagellar genes and decreased expression of polysaccharide capsule operon. Czech strains (Bp46, K10, Bp155, Bp318 and Bp6242)exhibited increased expression of T3SS and sulphate metabolism genes when compared to Tohama I. In spite of 50 years of vaccination the Czech vaccine strains (VS67, VS393 and VS401) differ from recent isolates to a lesser extent than from another vaccine strain Tohama I.