Project description:White grape (Vitis vinifera cv. Furmint) berry samples subjected to natural noble rot were collected in a vineyard in Mád, Hungary (Tokaj wine region). Raw data include grapevine and Botrytis cinerea sequence reads.
Project description:We have carried out a global transcriptional analysis of grapevine resistance induced by Trichoderma harzianum T39 against Plasmopara viticola using high-throughput Illumina sequencing technology. Four samples were analyzed: control (C), T39-treated (T39), P. viticola-inoculated control (C+P.v.) and P. viticola-inoculated T39-treated (T39 P.v.) plants. Three biological replicates (named A, B and C) were analyzed for each sample and sequenced twice (named 1 and 2). Reads were aligned to the Pinot Noir ENTAV 115 genome and then analyzed to measure gene expression levels. Differentially expressed genes have been identified by statistical analysis.
Project description:The aim of this work was to study the metabolism of grape berry skin, a tissue that has a protective role against damage by physical injuries and pathogen attacks. This role requires a metabolism able to sustain biosynthetic activities such as those relating to secondary compounds (i.e. flavonoids). In order to draw the attention on these biochemical processes, a proteomic and metabolomic comparative analysis was performed among Riesling Italico, Pinot Gris, Pinot Noir and Croatina cultivars, which are known to accumulate anthocyanins to a different extent. The application of multivariate statistics on the dataset pointed out that the cultivars were distinguishable from each other and the order in which they were grouped mainly reflected their relative anthocyanin contents. Sorting the spots according to their significance selected proteins were characterized by LC-ESI-MS/MS. Considering the functional distribution, the identified proteins were involved in many physiological processes such as stress, defense, carbon metabolism, energy conversion and secondary metabolism. The trends of some metabolites were related to those of the protein data. Taken together, the results permitted to highlight the relationships between the secondary compound pathways and the main metabolism (e.g. glycolysis and TCA cycle). Moreover, the trend of accumulation of many proteins involved in stress responses, reinforced the idea that they could play a role in the cultivar specific developmental plan.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:MicroRNAs (miRNAs) play a important part in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice and other plants. However, the number of miRNAs discovered in grape is relatively low and little is known about miRNAs responded gibberellin during fruit germination. In this study, a small RNA library from gibberellin grape fruits was sequenced by the high throughput sequencing technology. A total of 16,033,273 reads were obtained. 812,099 total reads representing 1726 unique sRNAs matched to known grape miRNAs. Further analysis confirmed a total of 149 conserved grapevine miRNA (Vv-miRNA) belonging to 27 Vv-miRNA families were validated, and 74 novel potential grapevine-specific miRNAs and 23 corresponding novel miRNAs* were discovered. Twenty-seven (36.5%) of the novel miRNAs exhibited differential QRT-PCR expression profiles in different development gibberellin-treated grapevine berries that could further confirm their existence in grapevine. QRT-PCR analysis on transcript abundance of 27 conserved miRNA family and the new candidate miRNAs revealed that most of them were differentially regulated by the gibberellin, with most conserved miRNA family and 26 miRNAs being specifically induced by gibberellin exposure. All novel sequences had not been earlier described in other plant species. In addition, 117 target genes for 29 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in gibberellin-treated grape berries. This study led to the confirmation of 101 known miRNAs and the discovery of 74 novel miRNAs in grapevine. Identification of miRNAs resulted in significant enrichment of the gibberellin of grapevine miRNAs and provided insights into miRNA regulation of genes expressed in grape berries. GSM604831 is the control for the gibberellin-treated sample.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.