Project description:The cotton - melon aphid Aphis gossypii is an extremely polyphagous sap feeding insect which infests more than 900 crops worldwide and posing a severe threat to farmers. The salivary proteins acts as interface between aphid and their host plant.However, the cotton aphid salivary proteome was not studied yet. Identifying the salivary proteins helps in better understanding of aphid adaptation to their host plant which aids us to search for novel plant genetic source.
Project description:This study was designed to identify the sRNAs in Aphis gossypii (cotton-melon aphid) during Vat-mediated resistance in teraction with melon
2013-06-01 | GSE38641 | GEO
Project description:Cotton aphid microbiome
| PRJNA1113681 | ENA
Project description:Transcriptome dynamics of male cotton aphid
Project description:This study provides evidence that aphid lncRNAs play a role in regulating aphid-plant interactions and at least one M. persicae lncRNA is a virulence factor
Project description:This study provides evidence that aphid lncRNAs play a role in regulating aphid-plant interactions and at least one M. persicae lncRNA is a virulence factor
Project description:Soybean aphid is one of the major limiting factors for soybean production. However, the mechanism for aphid resistance in soybean is remain enigmatic, very little information is available about the different mechanisms between antibiosis and antixenosis genotypes. Here we dissected aphid infestation into three stages and used genome-wide gene expression profiling to investigate the underlying aphid-plant interaction mechanisms. Approximately 990 million raw reads in total were obtained, the high expression correlation in each genotype between infestation and non-infestation indicated that the response to aphid was controlled by a small subset of important genes. Moreover, plant response to aphid infestation was more rapid in resistant genotypes. Among the differentially expressed genes (DEGs), a total of 901 transcription factor (TF) genes categorized to 40 families were identified with distinct expression patterns, of which AP2/ERF, MYB and WRKY families were proposed to playing dominated roles. Gene expression profiling demonstrated that these genes had either similar or distinct expression patterns in genotypes. Besides, JA-responsive pathway was domination in aphid-soybean interaction compared to SA pathway, which was not involved plant response to aphid in susceptible and antixenotic genotypes but played an important role in antibiosis one. Throughout, callose were deposited in all genotypes but it was more rapidly and efficiently in antibiotic one. However, reactive oxygen species were not involved in response to aphid attack in resistant genotypes during aphid infestation. Our study helps uncover important genes associated with aphid-attack response in antibiosis and antixenotic genotypes of soybean.
Project description:Environmentally induced changes in the epigenome help individuals to quickly adapt to fluctuations in the conditions of their habitats. Here we explored those changes in Arabidopsis thaliana plants subjected to multiple biotic and abiotic stresses, and identified transposable element (TE) activation in plants infested with the green peach aphid, Myzus persicae. We performed a genome-wide analysis of DNA methylation, mRNA expression, mRNA degradation and small RNAs accumulation. Our results demonstrate that aphid feeding induces loss of methylation of hundreds of loci, mainly TEs with labile chromatin characteristics. This loss of methylation has the potential to regulate gene expression and we found evidence that it is involved in the control of key plant immunity genes. Accordingly, we find that mutant plants deficient in epigenetic silencing show increased resistance to M.persicae infestation. Collectively, our results show that changes in DNA methylation play a significant role in the regulation of the plant transcriptional response and induction of defence response against aphid feeding.
Project description:The aim of this study is to identify Arabidopsis genes whose expression is altered by aphid feeding. An understanding of the plant aphid interaction at the level of the plant transcriptome will 1) consolidate current areas of investigation focused on the phloem composition (the aphid diet), 2) open up areas of plant aphid interactions for ourselves and other workers, 3) Contribute to understanding the use of new molecular technologies in an environmental context and 4) contribute to existing and development of novel control strategies.Our Arabidopsis/Myzus persicae system provides a valuable model for the study because of: a) the advantages of using Arabidopsis, b) The ability to use clonal insects, c) phloem feeding aphids facilitate focus on a specific cell type, d) aphid stylectomy allows collection of pure phloem sap to monitor ‘phloem phenotype’ of the plant and the insect diet, e) we have techniques to monitor the reproductive performance and feeding behaviour aphids.Our strategy has been to test the function of selected genes, particularly those regulating phloem composition (the feeding site of the aphid) based on current phloem models of phloem function. Gene choice is limited the simplicity of current models of phloem aphid interaction.We propose a simple two treatment (aphid infested vs control plants) experiment that will identify novel target genes for future analysis. Arabidopsis plants (variety Columbia) will be grown in 16/8 light/dark in temperature controlled growth rooms. At growth stage 3.90, when rosette growth is complete, 10 clonal adult Myzus persicae will be caged in clip cages on the two largest leaves on each plant. Control plants will be treated identically except that the cages will be empty. Leaves will be harvested 8 h after infestation. This time point is selected as we know that 90% of aphids are plugged into the sieve element within 2h and that a 6h lag phase has period has previously been used when examining gene expression affected by wounding. In subsequent experiments we will examine time courses of expression of relevant genes using other approaches. Pooling two leaves from each of ten plants will generate the RNA sample, ensuring that expression signals are representative of the population of plants. Keywords: pathogenicity_design