Project description:Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is life-threatening and occurs in up to 30% of MRSA bacteremia cases despite appropriate antimicrobial therapy. Isolates of MRSA that cause antibiotic-persistent MRSA bacteremia (APMB) typically have in vitro antibiotic susceptibilities equivalent to those causing antibiotic-resolving MRSA bacteremia (ARMB). Thus, persistence reflects host-pathogen interactions occurring uniquely in context of antibiotic therapy in vivo. However, host factors and mechanisms involved in APMB remain unclear. We compared DNA methylomes in circulating immune cells from patients experiencing APMB vs. ARMB. Overall, methylation signatures diverged in the distinct patient cohorts. Differentially methylated sites intensified proximate to transcription factor binding sites, primarily in enhancer regions. In APMB patients, significant hypo-methylation was observed in binding sites for CCAAT enhancer binding protein (C/EBP) and signal transducer / activator of transcription 1 (STAT1). In contrast, hypo-methylation in ARMB patients localized to glucocorticoid receptor and histone acetyltransferase p300 binding sites. These distinct methylation signatures were enriched in neutrophils and achieved a mean area under the curve of 0.85 when used to predict APMB using a classification model. These findings differentiate epigenotypes in patients experiencing APMB vs. ARMB, and suggest a risk stratification strategy for antibiotic persistence in patients treated for MRSA bacteremia.
Project description:Methicillin resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen chief amongst bloodstream infecting pathogens. MRSA produces an array of human specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes to infection with MRSA using RNA-Seq. We found that the overall transcriptional response to MRSA was weak both in the number of genes and the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we found that infection with live MRSA resulted in the down-regulation of genes related to innate immune response, and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in heat-killed MRSA or blood infected with live Staphylococcus epidermidis. Importantly, the muted signature was also present in patients with S. aureus bacteremia. We next identified the master regulator SaeRS and the SaeRS-regulated pore-forming toxins as key mediators of transcriptional suppression. The impaired chemokine and cytokine responses were reflected by circulating protein levels in the plasma. MRSA elicits a soluble milieu that is restrictive in the recruitment of human neutrophils compared to strains lacking saeRS. Thus, MRSA blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of S. aureus during invasive infection.
2022-07-20 | GSE193219 | GEO
Project description:Within-host evolution of Klebsiella pneumoniae from intestinal carriage to bacteremia
Project description:Panton-valentine leukocidin (PVL) has been linked to worldwide emergence of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) -- its role in virulence in unclear. Here we show that PVL had no effect on global gene expression of prominent CA-MRSA strains nor did it affect bacterial clearance from lungs, spleen and kidneys in a highly discriminatory rabbit bacteremia model. These findings negate a large body of epidemiological research that implicated PVL in CA-MRSA virulence. Keywords: mutant vs wild type in 2 different growth phases grown in 2 different medias
Project description:BACKGROUND: Meticillin-resistant Staphylococcus aureus (MRSA) infections remain important medical and veterinary challenges. The MRSA isolated from dogs and cats typically belong to dominant hospital-associated clones, in the UK mostly EMRSA-15 (CC22 SCCmecIV), suggesting original human-to-animal transmission. Nevertheless, little is known about host-specific genetic variation within the same S. aureus lineage. HYPOTHESIS/OBJECTIVES: To identify host-specific variation amongst MRSA CC22 SCCmecIV by comparing isolates from pets with those from in-contact humans using whole-genome microarray. METHODS: Six pairs of MRSA CC22 SCCmecIV from human carriers (owners and veterinary staff) and their respective infected in-contact pets were compared using a 62-strain whole-genome S. aureus microarray (SAM-62). The presence of putative host-specific genes was subsequently determined in a larger number of human (n = 47) and pet isolates (n = 93) by PCR screening. RESULTS: Variation in mobile genetic elements (MGEs) occurred frequently and appeared largE: The variation found amongst MGEs highlights that genetic adaptation in MRSA continues. However, host-specific MGEs were not detected, which supports the hypothesis that pets may not be natural hosts of MRSA CC22 and emphasizes that rigorous hygiene measures are critical to prevent contamination and infection of dogs and cats. The host specificity of individual heavy-metal resistance genes warrants further investigation into different selection pressures in humans and animals.
Project description:Panton-valentine leukocidin (PVL) has been linked to worldwide emergence of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) -- its role in virulence in unclear. Here we show that PVL had no effect on global gene expression of prominent CA-MRSA strains nor did it affect bacterial clearance from lungs, spleen and kidneys in a highly discriminatory rabbit bacteremia model. These findings negate a large body of epidemiological research that implicated PVL in CA-MRSA virulence. Keywords: mutant vs wild type in 2 different growth phases grown in 2 different medias Wild type USA 300 (strain SF8300), wild type USA 400 (strain MW2) were compared against their respective PVL isogenic knock out strains. Strains were compared at both mid-exponential and stationary phase and grown in both TSB and CCY to determine if PVL plays a role in gene regulation under these conditions.
Project description:The success of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) as pathogens is due to a combination of antibiotic resistance with high virulence. However, evolution of the exceptional virulence potential of CA-MRSA is not understood. Our previous study indicated that differential gene expression contributes substantially to this process. Thus, we here investigated the role of the pivotal virulence gene regulatory system agr in the most prevalent CA-MRSA strain USA300. Using a mouse subcutaneous infection model, we show that agr is essential for the development of CA-MRSA skin infections, the most frequent manifestation of disease caused by CA-MRSA. Furthermore, genome-wide analysis of gene expression revealed significant differences in agr-dependent virulence gene regulation between CA-MRSA, HA-MRSA, and laboratory strains. Our findings demonstrate that agr functionality is critical for CA-MRSA disease and indicate that an adaptation of the agr regulon to optimize expression of a broad set of virulence determinants may have contributed to the evolution of exceptionally pronounced virulence of CA-MRSA strains. Keywords: wild type vs mutant Wild type vs mutant agr strains.