Project description:Comparison of probe-target dissociations of probe Eub338 and Gam42a with native RNA of P. putida, in vitro transcribed 16s rRNA of P. putida, in vitro transcribed 16S rRNA of a 2,4,6-trinitrotoluene contaminated soil and an uncontaminated soil sample. Functional ANOVA revealed no significant differences in the dissociation curves of probe Eub338 when hybridised to the different samples. On the opposite, the dissociation curve of probe Gam42a with native RNA of P. putida was significantly different than the dissociation curves obtained with in vitro transcribed 16S rRNA samples. Keywords: Microbial diversity, thermal dissociation analysis, CodeLink microarray
Project description:We have developed a 60-mer oligonucleotide multibacterial microarray for detection and expression profiling of biodegradative genes and bacterial diversity (16S rRNA gene) in different habitats contaminated with varieties of hazardous chemicals. The genes selected were involved in biodegradation and biotransformation of various groups of compounds viz. nitroaromatic compounds (148 genes), chloroaromatic compounds (75 genes), monoaromatic compounds (373 genes), polyaromatic hydrocarbons (174 genes), pesticides/ herbicides (34 genes), alkanes/aliphatics (185 genes) and heavy metals (68 genes), which covered a total number of 133 chemicals. The efficiency (specificity, detection sensitivity) of the developed array was evaluated using the labeled genomic DNA of pure bacterial strains, Escherichia coli DH5α and Sphingomonas sp. strain NM-05 (involved in the biodegradation of γ-hexachlorohexane isolated from IPL, Lucknow) at different concentrations of 300ng, 500ng, 800ng, 1000ng and 1250ng. The specificity of the developed array was further validated using mixed cultures containing three strains (Sphingomonas sp. strain NM-05, Rhodococcus sp. strain RHA1 and Bordetella sp. strain IITR-02) involved in biodegradation of γ-hexachlorohexane, biphenyl and chlorobenzenes respectively. The mixed culture also contained non-target/non-degrader strains (E. coli DHα, E.coli BL21 and E.coli K12 NCTC50192). The developed array was applied for profiling using the total soil DNA in five contaminated habitats of north India, viz. chloroaromatic chemicals contaminated site (India Pesticide Limited, Chinhat, Lucknow), a river sediments (Gomti river sediment, Lucknow), heavy metal industry dump site (Jajmau industrial area Kanpur), a effluent treatment plant (CETP along Ganges river near Kanpur), and an oil refinery (Mathura oil refinery). Hybridization of 16S rRNA probes revealed the presence of bacteria similar to well characterized genera involved in biodegradation of pollutants. Genes involved in complete degradation pathways for hexachlorocyclohexane (lin), 1,2,4-trichlorobenzene (tcb), naphthalene (nah), phenol (mph), biphenyl (bph), benzene (ben), toluene (tbm), xylene (xyl), phthalate (pht), Salicylate (sal) and resistance to mercury (mer) were detected with highest intensity. The most abundant genes belonged to hydroxylases, monooxygenases and dehydrogenases which were present in all the five samples. Many compound specific genes which initiate the degradation pathway were also detected. Thus, the array developed and validated here may be useful in assessing the biodegradative potential and composition of environmentally useful bacteria in hazardous ecosystems.
Project description:We have developed a 60-mer oligonucleotide multibacterial microarray for detection and expression profiling of biodegradative genes and bacterial diversity (16S rRNA gene) in different habitats contaminated with varieties of hazardous chemicals. The genes selected were involved in biodegradation and biotransformation of various groups of compounds viz. nitroaromatic compounds (148 genes), chloroaromatic compounds (75 genes), monoaromatic compounds (373 genes), polyaromatic hydrocarbons (174 genes), pesticides/ herbicides (34 genes), alkanes/aliphatics (185 genes) and heavy metals (68 genes), which covered a total number of 133 chemicals. The efficiency (specificity, detection sensitivity) of the developed array was evaluated using the labeled genomic DNA of pure bacterial strains, Escherichia coli DH5M-NM-1 and Sphingomonas sp. strain NM-05 (involved in the biodegradation of M-NM-3-hexachlorohexane isolated from IPL, Lucknow) at different concentrations of 300ng, 500ng, 800ng, 1000ng and 1250ng. The specificity of the developed array was further validated using mixed cultures containing three strains (Sphingomonas sp. strain NM-05, Rhodococcus sp. strain RHA1 and Bordetella sp. strain IITR-02) involved in biodegradation of M-NM-3-hexachlorohexane, biphenyl and chlorobenzenes respectively. The mixed culture also contained non-target/non-degrader strains (E. coli DHM-NM-1, E.coli BL21 and E.coli K12 NCTC50192). The developed array was applied for profiling using the total soil DNA in five contaminated habitats of north India, viz. chloroaromatic chemicals contaminated site (India Pesticide Limited, Chinhat, Lucknow), a river sediments (Gomti river sediment, Lucknow), heavy metal industry dump site (Jajmau industrial area Kanpur), a effluent treatment plant (CETP along Ganges river near Kanpur), and an oil refinery (Mathura oil refinery). Hybridization of 16S rRNA probes revealed the presence of bacteria similar to well characterized genera involved in biodegradation of pollutants. Genes involved in complete degradation pathways for hexachlorocyclohexane (lin), 1,2,4-trichlorobenzene (tcb), naphthalene (nah), phenol (mph), biphenyl (bph), benzene (ben), toluene (tbm), xylene (xyl), phthalate (pht), Salicylate (sal) and resistance to mercury (mer) were detected with highest intensity. The most abundant genes belonged to hydroxylases, monooxygenases and dehydrogenases which were present in all the five samples. Many compound specific genes which initiate the degradation pathway were also detected. Thus, the array developed and validated here may be useful in assessing the biodegradative potential and composition of environmentally useful bacteria in hazardous ecosystems. Agilent one-color CGH experiment,Organism: Genotypic designed Agilent-17159 Genotypic designed Agilent Multibacterial 8x15k Array , Labeling kit: Agilent Genomic DNA labeling Kit (Part Number: 5190-0453)
Project description:Contaminated aquifer (Dusseldorf-Flinger, Germany) templates extracted from 5 sediment depths ranging between 6.4 and 8.4 m below ground and over 3 years of sampling were amplified for amplicon pyrosequencing using the primers Ba27f (5’-aga gtt tga tcm tgg ctc ag-3’) and Ba519r (5’- tat tac cgc ggc kgc tg-3’), extended as amplicon fusion primers with respective primer A or B adapters, key sequence and multiplex identifiers (MID) as recommended by 454/Roche. Amplicons were purified and pooled as specified by the manufacturer. Emulsion PCR (emPCR), purification of DNA-enriched beads and sequencing run were performed following protocols and using a 2nd generation pyrosequencer (454 GS FLX Titanium, Roche) as recommended by the developer. Quality filtering of the pyrosequencing reads was performed using the automatic amplicon pipeline of the GS Run Processor (Roche), with a slight modification concerning the valley filter (vfScanAllFlows false instead of TiOnly) to extract the sequences. Demultiplexed raw reads were furhter trimmed for quality and lenght (>250 bp).
Project description:High Arctic soils have low nutrient availability, low moisture content and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at Alert (ex situ approach) and Eureka (in situ approach), in the Canadian high Arctic. Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as reverse-transcriptase real-time PCR targeting key functional genes. Results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon ring-hydroxylating-dioxygenases were observed one month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e. ex situ vs. in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation. 38 soil samples from two high arctic locations that were contaminated-treated, contaminated or not contaminated followed for up to 4 years