Project description:To gain more insight into cellular responses to mercury, we have undertaken a large-scale analysis of the rice transcriptome during mercury stress.More transcripts were responsive to mercury during short (pooled from 1- and 3-h treatments) , as compared to long (24 h) exposures. After short exposures, these induced genes can be divided into different functional categories, mainly on the basis of cell wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Molecular mechanisms for the mercury toxicity in rice roots.
Project description:To gain more insight into cellular responses to mercury, we have undertaken a large-scale analysis of the rice transcriptome during mercury stress.More transcripts were responsive to mercury during short (pooled from 1- and 3-h treatments) , as compared to long (24 h) exposures. After short exposures, these induced genes can be divided into different functional categories, mainly on the basis of cell wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Molecular mechanisms for the mercury toxicity in rice roots. Two-condition experiment, short exposures and long exposures. Comparison of mock control and rice seedlings treated with 25mM Hg during short (pooled from 1- and 3-h treatments), as compared to long (24 h) exposures.; Biological replicates: 3 control replicates (short and long exposures), 3 Hg-treated replicates (short and long exposures).
Project description:We present the draft genome of Nitrospirae bacterium Nbg-4 as a representative of this clade and couple this to in situ protein expression under sulfate-enriched and sulfate-depleted conditions in rice paddy soil. The proteins were extracted from the soil and analysed via LC-MS/MS measurements.
Project description:Macronutrients are pivotal elements for proper plant growth and development. We performed microarray analysis of rice leaves under nitrogen (N), phosphorus (P), and potassium (K) deficiency conditions in paddy field to obtain a global view of gene regulations associated with plant response to essential nutrients.