Project description:Tree height growth is sensitive to climate change; therefore, incorporating climate factors into tree height prediction models can improve our understanding of this relationship and provide a scientific basis for plantation management under climate change conditions. Mongolian pine (Pinus sylvestris var. mongolica) is one of the most important afforestation species in Three-North Regions in China. Yet our knowledge on the relationship between height growth and climate for Mongolian pine is limited. Based on survey data for the dominant height of Mongolian pine and climate data from meteorological station, a mixed-effects Chapman-Richards model (including climate factors and random parameters) was used to study the effects of climate factors on the height growth of Mongolian pine in Zhanggutai sandy land, Northeast China. The results showed that precipitation had a delayed effect on the tree height growth. Generally, tree heights increased with increasing mean temperature in May and precipitation from October to April and decreased with increasing precipitation in the previous growing season. The model could effectively predict the dominant height growth of Mongolian pine under varying climate, which could help in further understanding the relationship between climate and height growth of Mongolian pine in semiarid areas of China.
Project description:To better understand the molecular bases of resin production, a major source of terpenes for industry, the transcriptome of adult Pinus elliottii var. elliottii (slash pine) trees under field commercial resinosis was obtained.