Project description:Brain metastasis is a major complication of lung cancer. An investigation of the pathogenic mechanisms of brain metastasis, as well as the identification of appropriate molecular markers, is necessary. We used microarrays to determine the expression patterns of microRNAs in lung cancer tissue with or without brain metastasis and to investigate the biological role of these miRNAs during tumorigenesis.
Project description:microRNA dysregulation is a common feature of cancer cells, but the complex roles of microRNAs in cancer are not fully elucidated. Here we used functional genomics to identify oncogenic microRNAs in non-small cell lung cancer and to evaluate their impact on response to EGFR targeting therapy. Our data demonstrate that microRNAs with an AAGUGC-motif in their seed-sequence increase both cancer cell proliferation and sensitivity to EGFR inhibitors. Global transcriptomics, proteomics and target prediction resulted in the identification of several tumor suppressors involved in the G1/S transition as targets of AAGUGC-microRNAs. The clinical implications of our findings were evaluated by analysis of public domain data supporting the link between this microRNA seed-family, their tumor suppressor targets and cancer cell proliferation. In conclusion we propose that AAGUGC-microRNAs are an integral part of an oncogenic signaling network, and that these findings have potential therapeutic implications, especially in selecting patients for EGFR-targeting therapy.
Project description:microRNA dysregulation is a common feature of cancer cells, but the complex roles of microRNAs in cancer are not fully elucidated. Here we used functional genomics to identify oncogenic microRNAs in non-small cell lung cancer and to evaluate their impact on response to EGFR targeting therapy. Our data demonstrate that microRNAs with an AAGUGC-motif in their seed-sequence increase both cancer cell proliferation and sensitivity to EGFR inhibitors. Global transcriptomics, proteomics and target prediction resulted in the identification of several tumor suppressors involved in the G1/S transition as targets of AAGUGC-microRNAs. The clinical implications of our findings were evaluated by analysis of public domain data supporting the link between this microRNA seed-family, their tumor suppressor targets and cancer cell proliferation. In conclusion we propose that AAGUGC-microRNAs are an integral part of an oncogenic signaling network, and that these findings have potential therapeutic implications, especially in selecting patients for EGFR-targeting therapy.
Project description:Microarray analysis of microRNAs differences between MCF-7 and MCF-7/ADR cells.Sample 1- Human breast cancer cell MCF-7,which exibits ER and PR expression, belongs to non-triple negative breast cancer cell with epithelial morphology and character.Sample 2-human breast cancer cell MCF-7/ADR,derived from MCF-7 and cultured with 1 ug/ml adriamycin for at least one year and pocesses adriamycin-resistance with mesenchymal morphology and character. We used microarrays to detail the global programme of microRNA expression between two distinct classes of breast cancer cells.
Project description:This SuperSeries is composed of the following subset Series: GSE37786: Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture (Experiment A) GSE37787: Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture (Experiment B) Refer to individual Series