Project description:modENCODE_submission_3082 This submission comes from a modENCODE project of Michael Snyder. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We are identifying the DNA binding sites for 300 transcription factors in C. elegans. Each transcription factor gene is tagged with the same GFP fusion protein, permitting validation of the gene's correct spatio-temporal expression pattern in transgenic animals. Chromatin immunoprecipitation on each strain is peformed using an anti-GFP antibody, and any bound DNA is deep-sequenced using Solexa GA2 technology. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: OP193(official name : OP193 genotype : unc-119(ed3); wgIs193(sea-2::TY1 EGFP FLAG C; unc-119) outcross : 3 mutagen : Bombard tags : GFP::3xFlag description : This strain's transgene was constructed by Mihail Sarov at the Max Planck Institute for Cell Biology in Tubiginen using Tony Hyman's recombineering pipeline. The resulting plasmid was used for biolistic transformation of an unc-119(ed3) strain. The SEA-2::EGFP fusion protein is expressed in the correct sea-2 spatio-temporal expression pattern. This strain was used for ChIP-seq experiments to map the in vivo binding sites for the SEA-2 transcription factor. made_by : ); Developmental Stage: L3; Genotype: unc-119(ed3); wgIs193(sea-2::TY1 EGFP FLAG C; unc-119); Sex: Hermaphrodite; EXPERIMENTAL FACTORS: Developmental Stage L3; Target gene sea-2; Strain OP193(official name : OP193 genotype : unc-119(ed3); wgIs193(sea-2::TY1 EGFP FLAG C; unc-119) outcross : 3 mutagen : Bombard tags : GFP::3xFlag description : This strain's transgene was constructed by Mihail Sarov at the Max Planck Institute for Cell Biology in Tubiginen using Tony Hyman's recombineering pipeline. The resulting plasmid was used for biolistic transformation of an unc-119(ed3) strain. The SEA-2::EGFP fusion protein is expressed in the correct sea-2 spatio-temporal expression pattern. This strain was used for ChIP-seq experiments to map the in vivo binding sites for the SEA-2 transcription factor. made_by : ); temp (temperature) 20 degree celsius
Project description:The study was conducted to understand the role of F6 small non-coding RNA in M.smegmatis. The results are a description of transcriptome changes in M. smegmaits strain with deletion of a gene of small RNA F6 relative to wild type strain.
Project description:The deep marine subsurface is one of the largest unexplored biospheres on Earth, where members of the phylum Chloroflexi are abundant and globally distributed. However, the deep-sea Chloroflexi have remained elusive to cultivation, hampering a more thorough understanding of their metabolisms. In this work, we have successfully isolated a representative of the phylum Chloroflexi, designated strain ZRK33, from deep-sea cold seep sediments. Phylogenetic analyses based on 16S rRNA genes, genomes, RpoB and EF-tu proteins indicated that strain ZRK33 represents a novel class within the phylum Chloroflexi, designated Sulfochloroflexia. We present a detailed description of the phenotypic traits, complete genome sequence and central metabolisms of the novel strain ZRK33. Notably, sulfate and thiosulfate could significantly promote the growth of the new isolate, possibly through accelerating the hydrolysis and uptake of saccharides. Thus, this result reveals that strain ZRK33 may play a crucial part in sulfur cycling in the deep-sea environments. Moreover, the putative genes associated with assimilatory and dissimilatory sulfate reduction are broadly distributed in the genomes of 27 metagenome-assembled genomes (MAGs) from deep-sea cold seep and hydrothermal vents sediments. Together, we propose that the deep marine subsurface Chloroflexi play key roles in sulfur cycling for the first time. This may concomitantly suggest an unsuspected availability of sulfur-containing compounds to allow for the high abundance of Chloroflexi in the deep sea.
Project description:Light was a ubiquitous environmental stimulus. Deep-sea microorganisms were exposed to a pervasive blue light optical environment. The utilization of blue light by deep-sea microorganisms, especially non-photosynthetic microorganisms, and the downstream pathway after light reception were obscure. Under the enrichment condition surrounded by blue light, a potential novel species named Spongiibacter nanhainus CSC3.9 from the deep-sea cold seep was isolated. Its growth and metabolism under blue light were significantly better than other wavelengths of light. Six blue light sensing proteins, including four BLUF (Blue Light Using Flavin) and two bacteriophytochrome, were annotated in the genome of strain CSC3.9. Then, with the assist of proteomic analysis, we demonstrated that 15960-BLUF was a crucial blue light receptor that interfered with motor behavior through chemotaxis pathway by means of in vivo and in vitro verification. In addition, 15960-BLUF mediated part of the blue light to promote the growth of strain CSC3.9. Further, we summarized the functional BLUF proteins from isolated marine microorganisms, and the high abundance distribution of BLUF similar to the downstream unresponsive domain type in strain CSC3.9 was demonstrated. The widespread distribution of BLUF protein in marine bacteria implied the extensiveness of this regulatory mechanism, and wavelength variation of light was a potential means to isolate uncultured microorganisms. This was the first reported in deep-sea microorganisms that BLUF-dependent physiological response to blue light. It provided a new clue for the blue light adaptation of microorganisms in disphotic zone.
2022-01-18 | PXD028001 | Pride
Project description:in situ transcription analysis of microbes in deep sea
| PRJNA776106 | ENA
Project description:transcription analysis of Aequorivita sp. F7 in deep sea
Project description:Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood. This study examined transcriptomic and microbiome changes in shallow-water mussels Mytilus galloprovincialis exposed to deep-sea conditions at the Site-F cold seep in the South China Sea. Results reveal complex gene expression adjustments in stress response, immune defense, homeostasis, and energy metabolism pathways during adaptation. After 10 days of deep-sea exposure, shallow-water mussels and their microbial communities closely resembled those of native deep-sea mussels, demonstrating host and microbiome convergence in response to adaptive shifts. Notably, methanotrophic bacteria, key symbionts in native deep-sea mussels, emerged as a dominant group in the exposed mussels. Host genes involved in immune recognition and endocytosis correlated significantly with the abundance of these bacteria. Overall, our analyses provide insights into adaptive transcriptional regulation and microbiome dynamics of mussels in deep-sea environments, highlighting the roles of conserved genes and microbial community shifts in adapting to extreme environments.