Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
Project description:To investigate the mechanism by which the microalgae-yeast co-culture system promotes wastewater denitrification. We concluded that microalgae and yeast exhibit a mutually beneficial relationship in the co-culture system. Microalgae nitrogen metabolism can be influenced by both miRNA and mRNA, and the presence of yeast stimulates gene expression in microalgae.
2023-07-12 | GSE231399 | GEO
Project description:bacteria community in membrane separation treatment of biogas slurry
Project description:We conducted a culture experiment by deeply submerging plants in swine wastewater in culturing Iris tectorum and co-culturing Iris tectorum and Dictyosphaerium sp., and found that the plants grew sub-normal in the plant-microalgae co-culture while the plants were dead after 21 days in the plant culture. We generated a comprehensive RNA-seq dataset from the submerged Iris tectorum leaves in both the plant culture and the plant-microalgae co-culture, aiming at providing information on the response mechanisms of the plants to waterlogging stress. Besides raw reads of the RNA-seq dataset, we used DEseq2 algorithms to detect the differently expressed genes in the plants between the different cultures. Additionally, we performed the plant disease resistance gene analysis for all the differentially expressed genes.
Project description:Reduction in visceral adipose tissue (VAT) mass reduces body weight and metabolic disease risk in obese patients. However surgical removal of VAT is highly invasive and thus not clinically feasible. We developed an injectable ice slurry for selective reduction of adipose tissue through cryolipolysis. The aim of this study was to investigate safety, feasibility and mechanism of ice slurry-induced cryolipolysis of VAT. Perigonadal VAT in diet-induced obese mice and rats was subjected to slurry or sham treatment. Body weight and blood chemistry were monitored for 56 days post-treatment. Histological analysis and molecular studies were performed to elucidate mechanisms of fat reduction. Treatment of VAT was well tolerated in all animals. Slurry induced adipocyte cell death via selective cryolipolysis; significant weight loss was noted at day 21 post-treatment. RNA sequencing from treated VAT samples showed increased expression of genes involved in inflammation, immune response, collagen biosynthesis and wound healing, and decreased expression of adipokines. This study demonstrates that slurry treatment is safe and effective in inducing cryolipolysis of VAT and subsequent weight loss in rodents. Ice slurry is promising as a minimally-invasive treatment to reduce visceral adipose tissue.