Project description:In this work we conducted Term-seq on Wild Type B. subtilis, and strains compromosing all logical mutations in all combinations of the genes that encode for NusA, NusG, and Rho, where we developed the first transcription termination atlas. We used this atlas to find that Rho can stimulate intrinsic termination in B. subtilis and we recapitulated this finding in vitro to dissect the mechanism.
Project description:This analysis is part of the study GSE27219, The condition-dependent transcriptome of Bacillus subtilis 168. In this study, 120 transcription units where identified for which transcription did not terminate at any specific site, leading to mRNA extension over long distances with slowly decreasing signal intensity. In most cases, lack of termination and read-through generated antisense transcripts. These findings together with the lack of intrinsic terminators suggested that transcription termination of the 120 transcription units could be mediated by the transcription termination factor Rho. In order to investigate the impact of Rho-mediated termination, tiling array hybridizations using RNA samples of a B. subtilis rho-null mutant and its parental strain were performed. B. subtilis 1012 wild-type and rho-mutant cells were grown in LB medium. Samples for tiling array analysis were taken during exponential growth phase. Hybridizations were performed in triplicate using RNA isolated from independent cultures.
Project description:This analysis is part of the study GSE27219, The condition-dependent transcriptome of Bacillus subtilis 168. In this study, 120 transcription units where identified for which transcription did not terminate at any specific site, leading to mRNA extension over long distances with slowly decreasing signal intensity. In most cases, lack of termination and read-through generated antisense transcripts. These findings together with the lack of intrinsic terminators suggested that transcription termination of the 120 transcription units could be mediated by the transcription termination factor Rho. In order to investigate the impact of Rho-mediated termination, tiling array hybridizations using RNA samples of a B. subtilis rho-null mutant and its parental strain were performed.
Project description:The transcription termination factor Rho is a global regulator of RNA polymerase (RNAP). Although individual Rho-dependent terminators have been studied extensively, less is known about the sites of RNAP regulation by Rho on a genome-wide scale. Using chromatin immunoprecipitation and microarrays (ChIP-chip), we examined changes in the distribution of Escherichia coli RNAP in response to the Rho-specific inhibitor bicyclomycin (BCM). We found ~200 Rho-terminated loci that were divided evenly into two classes: intergenic (at the ends of genes) and intragenic (within genes). The intergenic class contained noncoding RNAs such as small RNAs (sRNAs) and transfer RNAs (tRNAs), establishing a previously unappreciated role of Rho in termination of stable RNA synthesis. The intragenic class of terminators included a novel set of short antisense transcripts, as judged by a shift in the distribution of RNAP in BCM-treated cells that was opposite to the direction of the corresponding gene. These Rho-terminated antisense transcripts point to a novel role of noncoding transcription in E. coli gene regulation that may resemble the ubiquitous noncoding transcription recently found to play myriad roles in eukaryotic gene regulation. Chromatin immunoprecipitation (ChIP) experiments were performed using antibodies against RNA polymerase (Beta or Beta' subunit) in cells treated with 20ug/ml bicyclomycin or untreated cells. Differentially labeled ChIP DNA and genomic DNA were competitively hybridized to an E. coli K-12 MG1655 tiling array with overlapping probes at ~12bp spacing across the entire genome. The series contains 4 datasets.
Project description:The transcription termination factor Rho is a global regulator of RNA polymerase (RNAP). Although individual Rho-dependent terminators have been studied extensively, less is known about the sites of RNAP regulation by Rho on a genome-wide scale. Using chromatin immunoprecipitation and microarrays (ChIP-chip), we examined changes in the distribution of Escherichia coli RNAP in response to the Rho-specific inhibitor bicyclomycin (BCM). We found ~200 Rho-terminated loci that were divided evenly into two classes: intergenic (at the ends of genes) and intragenic (within genes). The intergenic class contained noncoding RNAs such as small RNAs (sRNAs) and transfer RNAs (tRNAs), establishing a previously unappreciated role of Rho in termination of stable RNA synthesis. The intragenic class of terminators included a novel set of short antisense transcripts, as judged by a shift in the distribution of RNAP in BCM-treated cells that was opposite to the direction of the corresponding gene. These Rho-terminated antisense transcripts point to a novel role of noncoding transcription in E. coli gene regulation that may resemble the ubiquitous noncoding transcription recently found to play myriad roles in eukaryotic gene regulation.
Project description:Transcription termination in bacteria can occur either via Rho-dependent or independent (intrinsic) mechanisms. Intrinsic terminators are composed of a stem-loop RNA structure followed by a uridine stretch and are known to terminate in a precise manner. In contrast, Rho-dependent terminators have more loosely defined characteristics and are thought to terminate in a diffuse manner. While transcripts ending in an intrinsic terminator are protected from 3’-5’ exonuclease digestion due to the stem-loop structure of the terminator, it remains unclear what protects Rho-dependent transcripts from being degraded. In this study, we mapped the exact steady-state RNA 3’ ends of hundreds of E. coli genes terminated either by Rho-dependent or independent mechanisms. We found that transcripts generated from Rho-dependent termination have precise 3’-ends at steady state. These termini were localized immediately downstream of energetically stable stem-loop structures, which were not followed by uridine rich sequences. We provide evidence that these structures protect Rho-dependent transcripts from 3’-5’ exonucleases such as PNPase and RNase II, and present data localizing the Rho-utilization (rut) sites immediately downstream of these protective structures. This study represents the first extensive in-vivo map of exact RNA 3’-ends of Rho-dependent transcripts in E. coli.
Project description:Transcription termination factor Rho is essential in enterobacteria. We inhibited Rho activity with bicyclomycin and used microarray experiments to assess Rho function on a genome-wide scale. Rho is a global regulator of gene expression that matches E. coli transcription to translational needs. Remarkably, genes that are most repressed by Rho are prophages and other horizontally-acquired portions of the genome. Elimination of these foreign DNA elements increases resistance to bicyclomycin. Although rho remains essential, such reduced-genome bacteria no longer require Rho cofactors NusA and NusG. Thus, Rho termination, supported by NusA and NusG, is required to suppress the toxic activity of foreign DNA. Global regulation of transcription termination by Rho, NusA, and NusG. Experiment Overall Design: Two sets of experiments are presented. First, treatment of E. coli with Rho inhibitor bicyclomycin was performed in strains MG1655 and O157:H7 EDL933 for twenty minutes at concentrations of 10, 25, or 100 micrograms/milliliter. In the second set of experiments the reduced-genome strain MDS42 was treated with bicyclomycin as well as having deletions of the genes nusA and nusG. Total RNA was extracted and hybridized to the Affymetrix E. coli Genome 2.0 array, which contains complete genome coverage of four strains of E. coli.
Project description:In this work we conducted Term-seq on Wild Type, NusA depletion, nusG deletion, and NusA depletion nusG deletion strains of B. subtilis. Using this approach, we found that NusG is an intrinsic termination factor that works single and cooperatively with NusA.
Project description:Despite the prevalence of antisense transcripts in bacterial transcriptomes, little is known about how their synthesis is controlled. We report that a major function of the Escherichia coli termination factor Rho and its co-factor NusG is suppression of ubiquitous antisense transcription genome-wide. Rho binds C-rich unstructured nascent RNA (high C/G ratio) prior to its ATP-dependent dissociation of transcription complexes. NusG is required for efficient termination at minority subsets (~20%) of both antisense and sense Rho-dependent terminators with lower C/G ratio sequences. In contrast, a widely studied nusA deletion proposed to compromise Rho-dependent termination had no effect on antisense or sense Rho-dependent terminators in vivo. Global co-localization of the nucleoid-associated protein H-NS with Rho-dependent terminators and genetic interactions between hns and rho suggest that H-NS aids Rho in suppression of antisense transcription. The combined actions of Rho, NusG, and H-NS appear to be analogous to the Sen1-Nrd1-Nab3 and nucleosome systems that suppress antisense transcription in eukaryotes. RNA-seq experiments were performed on ribosome-depleted RNA from cells treated with 20 ug/ml bicyclomycin or untreated cells. The series contains 4 datasets.