Project description:Orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor 2 (COUPTF2; NR2F2) is highly expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, NR2F2 mutations result in both congenital heart disease and diaphragmatic hernia, conditions associated with the development of pulmonary arterial hypertension (PAH). However, COUPTF2 functions in mature endothelium are uncertain. NR2F2 knockdown in primary human endothelial cells (ECs) led to an interferon-biased inflammatory response, endothelial-to-mesenchymal transition, proliferation, hypermigration, apoptosis-resistance and mitochondrial dysfunction. These phenotypic changes were associated with AKT activation and increased Dickkopf-1 (DKK1) expression, a Wnt/β-catenin pathway inhibitor. DKK1 was also elevated in patients with PAH and secreted in response to loss of bone morphogenetic receptor type 2 (BMPR2), the archetypal PAH-associated genetic defect. Together, these findings demonstrate that endothelial NR2F2 suppresses inflammation and proliferation. Thus, NR2F2 loss disrupts EC homeostasis and may promote pathologic vascular remodeling in the development of PAH.
Project description:Orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor 2 (COUPTF2; NR2F2) is highly expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, NR2F2 mutations result in both congenital heart disease and diaphragmatic hernia, conditions associated with the development of pulmonary arterial hypertension (PAH). However, COUPTF2 functions in mature endothelium are uncertain. NR2F2 knockdown in primary human endothelial cells (ECs) led to an interferon-biased inflammatory response, endothelial-to-mesenchymal transition, proliferation, hypermigration, apoptosis-resistance and mitochondrial dysfunction. These phenotypic changes were associated with AKT activation and increased Dickkopf-1 (DKK1) expression, a Wnt/β-catenin pathway inhibitor. DKK1 was also elevated in patients with PAH and secreted in response to loss of bone morphogenetic receptor type 2 (BMPR2), the archetypal PAH-associated genetic defect. Together, these findings demonstrate that endothelial NR2F2 suppresses inflammation and proliferation. Thus, NR2F2 loss disrupts EC homeostasis and may promote pathologic vascular remodeling in the development of PAH.
Project description:Orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor 2 (COUPTF2; NR2F2) is highly expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, NR2F2 mutations result in both congenital heart disease and diaphragmatic hernia, conditions associated with the development of pulmonary arterial hypertension (PAH). However, COUPTF2 functions in mature endothelium are uncertain. NR2F2 knockdown in primary human endothelial cells (ECs) led to an interferon-biased inflammatory response, endothelial-to-mesenchymal transition, proliferation, hypermigration, apoptosis-resistance and mitochondrial dysfunction. These phenotypic changes were associated with AKT activation and increased Dickkopf-1 (DKK1) expression, a Wnt/β-catenin pathway inhibitor. DKK1 was also elevated in patients with PAH and secreted in response to loss of bone morphogenetic receptor type 2 (BMPR2), the archetypal PAH-associated genetic defect. Together, these findings demonstrate that endothelial NR2F2 suppresses inflammation and proliferation. Thus, NR2F2 loss disrupts EC homeostasis and may promote pathologic vascular remodeling in the development of PAH.
Project description:Gene expression profiles of primary lymphatic endothelial cells (LECs) isolated from human foreskin were analyzed after siRNA-mediated knockdown of control (firefly luciferase), Prox1, NR2F2 or Prox1/NR2F2 for 48 hours. Experiment Overall Design: Passage five human lymphatic endothelial cells (LECs) were cultured on fibronectin (10 μg/ml)-coated plates in a complete media (EBM, 20% FBS supplemented with 10 μg/ml hydrocortisone acetate, 25 ug/ml cAMP and antibiotics). LECs were harvested and electorporated with siRNA duplexes for 48 hours with siRNA duplexes against either firefly luciferase(control), Prox1, NR2F2 or Prox1/NR2F2. Total RNA was purified using Tri-reagent and was subjected to microarray analysis. Experiment Overall Design:
Project description:This study aimed to elucidate the mechanisms underlying the anti-diabetic effects of Mathurameha against high glucose-induced endothelial dysfunction by SWATH-MS. The EA.hy926 cells were treated with normal glucose, high glucose, or high glucose plus Mathurameha for 24 h. Proteins were extracted and resolved on 12% SDS-PAGE. Coomassie blue-stained gel were excised in the whole lane and subjected to in-gel tryptic digestion and SWATH-MS.
Project description:Gene expression profiles of primary lymphatic endothelial cells (LECs) isolated from human foreskin were analyzed after siRNA-mediated knockdown of control (firefly luciferase), Prox1, NR2F2 or Prox1/NR2F2 for 48 hours.