Project description:The majority of YAP signature have been derived from epithelial and/or cancer cell lines. Here we identified the exactly genes that were regulated by Yap in human neutrophils with CUT&Tag assay. We found that the target genes of Yap in neutrophils including CD14, CD54, and EGR1 which are related to the activation of neutrophils. This study provides a framework for the Yap signature in neutrophil.
Project description:Oral squamous cell carcinoma (OSCC) is a prevalent form of cancer that develops from the epithelium of the oral cavity. OSCC is on the rise worldwide, and death rates associated with the disease are particularly high. Despite progress in understanding of the mutational and expression landscape associated with OSCC, advances in deciphering these alterations for the development of therapeutic strategies have been limited. Further insight into the molecular cues that contribute to OSCC is therefore required. Here we show that the transcriptional regulators YAP (YAP1) and TAZ (WWTR1), which are key effectors of the Hippo pathway, drive pro-tumorigenic signals in OSCC. Regions of pre-malignant oral tissues exhibit aberrant nuclear YAP accumulation, suggesting that dysregulated YAP activity contributes to the onset of OSCC. Supporting this premise, we determined that nuclear YAP and TAZ activity drives OSCC cell proliferation, survival, and migration in vitro, and is required for OSCC tumor growth and metastasis in vivo. Global gene expression profiles associated with YAP and TAZ knockdown revealed changes in the control of gene expression implicated in pro-tumorigenic signaling, including those required for cell cycle progression and survival. Notably, the transcriptional signature regulated by YAP and TAZ significantly correlates with gene expression changes occurring in human OSCCs identified by The Cancer Genome Atlas (TCGA), emphasizing a central role for YAP and TAZ in OSCC biology. Expression profiling was conducted following the repression of the transcriptional regulators TAZ and YAP (YAP/TAZ) in human SCC2 oral cancer cells. Human SCC2 oral cancer cells were transfected with control siRNA, or siRNAs targeting TAZ, YAP, or YAP/TAZ for 48 hours. Total RNA from three independent experiments carried out on separate days was isolated and purified and the samples were then profiled on Affymetrix Human Gene 2.0 Chips at the Boston University Microarray Core. The expression profiles were processed and normalized using the Robust Multi-array Average (RMA) procedure (23) based on a custom Brainarray CDF (24). For each of the siRNA experiments, signatures of genes differentially expressed between treatment and corresponding siRNA control with an FDR q-value ?0.05 and a fold change ?2 were identified as either activated (up-regulated in control) or repressed (up-regulated in treatment). The overlap between the differentially expressed gene signatures was evaluated by Fisher test. Hierarchical gene and sample clustering was performed on the top 3000 genes with highest median absolute deviation (MAD; a robust version of the variance) across 12 samples, using “ward” as the agglomeration rule, and 1 minus Pearson correlation and Euclidean as the distance measures for genes and samples, respectively.
Project description:We report the characterisation of the transcriptional changes associated with neutrophil hypersegmentation in primary human cells. We established a model of hypersegmentation by exposing healthy peripheral blood neutrophils to the angiotensin converting enzyme inhibitor (ACEi) captopril. Laser capture microdissection (LCM) was then adapted to isolate a population of hypersegmented neutrophils. Transcriptomic analysis of microdissected hypersegmented neutrophils was undertaken using RNA sequencing. This study reveals the transcriptomic signature of hypersegmented neutrophils, with five genes differentially expressed and modulated pathways including histone modification, protein-DNA complex assembly and antimicrobial humoral response.
Project description:Compared to circulating neutrophils (NC cells), splenic neutrophils (NBH cells) have an activated phenotype and enhanced B cell-helper activity. The transcriptome analysis of splenic and circulating neutrophils was performed to verify whether the enhanced B cell-helper activity of splenic neutrophils correlated with a specific gene signature. Unstimulated neutrophils were FACS sorted from the peripheral blood and spleen of six adult healthy subjects for RNA isolation and Agilent analysis.
Project description:Oral squamous cell carcinoma (OSCC) is a prevalent form of cancer that develops from the epithelium of the oral cavity. OSCC is on the rise worldwide, and death rates associated with the disease are particularly high. Despite progress in understanding of the mutational and expression landscape associated with OSCC, advances in deciphering these alterations for the development of therapeutic strategies have been limited. Further insight into the molecular cues that contribute to OSCC is therefore required. Here we show that the transcriptional regulators YAP (YAP1) and TAZ (WWTR1), which are key effectors of the Hippo pathway, drive pro-tumorigenic signals in OSCC. Regions of pre-malignant oral tissues exhibit aberrant nuclear YAP accumulation, suggesting that dysregulated YAP activity contributes to the onset of OSCC. Supporting this premise, we determined that nuclear YAP and TAZ activity drives OSCC cell proliferation, survival, and migration in vitro, and is required for OSCC tumor growth and metastasis in vivo. Global gene expression profiles associated with YAP and TAZ knockdown revealed changes in the control of gene expression implicated in pro-tumorigenic signaling, including those required for cell cycle progression and survival. Notably, the transcriptional signature regulated by YAP and TAZ significantly correlates with gene expression changes occurring in human OSCCs identified by The Cancer Genome Atlas (TCGA), emphasizing a central role for YAP and TAZ in OSCC biology. Expression profiling was conducted following the repression of the transcriptional regulators TAZ and YAP (YAP/TAZ) in human SCC2 oral cancer cells.
Project description:YAP is an oncogene and an inducer of Epithelial-to-Mesenchymal Transition (EMT). We used microarrays to detail the global program of gene expression to identify YAP target genes. PUBLICATION ABSTRACT:; The Hippo pathway defines a novel signaling cascade regulating cell proliferation and survival in Drosophila, which involves the negative regulation of the transcriptional coactivator Yorkie by the kinases Hippo and Warts. We have recently shown that the human ortholog of Yorkie, YAP, maps to a minimal amplification locus in mouse and human cancers, and that it mediates dramatic transforming activity in MCF10A primary mammary epithelial cells. Here we show that LATS proteins (mammalian orthologs of Warts) interact directly with YAP in mammalian cells and that ectopic expression of LATS1, but not LATS2, effectively suppresses the YAP phenotypes. Furthermore, shRNA-mediated knockdown of LATS1 phenocopies YAP overexpression. Since this effect can be suppressed by simultaneous YAP knockdown, it suggests that YAP is the primary target of LATS1 in mammalian cells. Expression profiling of genes induced by ectopic expression of YAP or by knockdown of LATS1 reveals a subset of potential Hippo pathway targets implicated in epithelial-to-mesenchymal transition (EMT), suggesting that this is a key feature of YAP signaling in mammalian cells. Experiment Overall Design: MCF10A cells were infected with retrovirus constructs (vector or YAP) and puromycin was used to select for transduced cells. Cells were split and grown to ~60-75%% confluency at which point they were harvested for RNA. Vector vs. YAP comparison was done in duplicate.
Project description:Neutrophil elastase (NE) is implicated in pulmonary arterial hypertension (PAH) but the role of neutrophils in the pathogenesis of PAH is unclear. Here we show that neutrophils from PAH vs. control subjects produce and release increased NE associated with enhanced extracellular trap formation. PAH neutrophils are highly adherent and show decreased migration consistent with increased vinculin, identified on proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic interferon signature in PAH neutrophils and an increase in human endogenous retrovirus (HERV-K) envelope protein. NE and interferon genes are induced by HERV-K envelope and vinculin is increased by HERV-K dUTPase that is elevated in PAH plasma. Neutrophil exosomes from PAH plasma contain increased NE and HERV-K envelope and induce pulmonary hypertension in mice, that is mitigated by the NE inhibitor and antiviral agent, elafin. Thus elevated HERVs explain pathological neutrophils linked to PAH induction and progression.
Project description:Compared to circulating neutrophils (NC cells), splenic neutrophils (NBH cells) have an activated phenotype and enhanced B cell-helper activity. The transcriptome analysis of splenic and circulating neutrophils was performed to verify whether the enhanced B cell-helper activity of splenic neutrophils correlated with a specific gene signature.