Project description:We investigated transcriptional response of CaCo-2 cells to iron treatments, we studied hemin effect by adding hemin to DMEM-FBS medium and iron deficiency effects in using an iron free medium compared to the same supplemented with FAC (ferric ammonium citrate). Keywords: various iron treatment, differential gene expression, hemin treatment, iron-free
Project description:To obtain deeper understanding of atmospheric dynamics of the potent greenhouse gas methane, controlling factors of methanotrophs, as the sole biological methane sink, is necessary. Recent research has revealed complex interactions between methanotrophs and heterotrophs, involving volatile organic compounds (VOCs). In environments with high methane concentrations VOC-mediated interactions significantly influence methane cycling and emissions. Here, we employed a multidisciplinary approach, utilizing proteomics, volatile analysis, and measurements of bacterial growth and methane oxidation to elucidate underlying mechanisms of VOC-mediated interactions between heterotrophs and methanotrophs. The results demonstrate that specific VOCs, like dimethylpolysulfides, released by heterotrophic bacteria can inhibit growth and methane uptake of methanotrophs, while other VOCs had the opposite effect. Proteomics analysis revealed differential protein expression patterns depending on exposure to the volatolome of a heterotrophic bacterium or with CO2 added, which was most pronounced with the particulate and soluble methane monooxygenase. The current study demonstrated potential biotic modulation of methanotrophy without direct contact, caused by VOC or CO2 from respiration, or both, with a proteomic response. Although further research is needed to elucidate the specific mechanisms involved, it is clear that methanotroph-heterotroph interactions need to be investigated closer to informs strategies for mitigating emission of the greenhouse gas methane.
Project description:Iron is limiting in the environment, bacteria respond to this deprivation by activating genes required for bacterial iron homeostasis. Transcriptional regulation in response to iron in Gram-negative bacteria is largely mediated by the ferric uptake regulator protein Fur, which in the presence of iron binds to a specific sequence in the promoter regions of genes under its control and acts as a repressor. Here we describe comparative global gene expression analysis using DNA microarray based on the whole genome sequence of the magnetotactic bacterium Magnetospirillum magneticum AMB-1 was conducted between wild type strain and a non-magnetic NMA61 mutant strain, generated by mini-Tn5 transposon mutagenesis which is incapable of assimilating iron to cytoplasm. No induction of the fur genes in NMA61 mutant strain was considered to be due to low intracellular iron concentration. In the iron-replete condition, among 4492 genes, 434 genes were down-regulated and 527 genes were up-regulated in the wild type strain. Among 434 genes down-regulated, 299 genes were not down-regulated in NMA61 mutant strain, indicating these genes are candidates of Fur-regulated. Keywords: Iron, magnetotactic bacteria
Project description:The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism in many bacteria. However, the full regulatory potential of Fur beyond iron metabolism remains undefined. Here, we comprehensively reconstructed the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements (ChIP-exo and RNA-seq). Polyomic data analysis revealed that a total of 81 genes in 42 transcription units (TUs) are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation as well as holo-Fur repression. We showed that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism, and biofilm development was found. These results indicate that Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate E. coli responses to the availability of iron.
Project description:The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism in many bacteria. However, the full regulatory potential of Fur beyond iron metabolism remains undefined. Here, we comprehensively reconstructed the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements (ChIP-exo and RNA-seq). Polyomic data analysis revealed that a total of 81 genes in 42 transcription units (TUs) are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation as well as holo-Fur repression. We showed that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism, and biofilm development was found. These results indicate that Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate E. coli responses to the availability of iron. [ChIP-exo]: A total of twelve samples were analyzed. WT and Fur-8-myc tagged cells were cultured in the presense and absence of iron with biological duplicates. To analyze static RNAP binding, rifampicin was also added to the media with biological duplicates. DPD = iron chelator.
Project description:We investigated transcriptional response of CaCo-2 cells to iron treatments, we studied hemin effect by adding hemin to DMEM-FBS medium and iron deficiency effects in using an iron free medium compared to the same supplemented with FAC (ferric ammonium citrate). Experiment Overall Design: Biological replicates were used (3 samples) of each iron treatments (SF-FAC, SF-0, DMEM-FBS, DMEM-Hemin). Each sample was labelled with cy5 and a pool of each sample was constituted and labelled with cy3.
Project description:Two Near Isogenic soybean (Glycine max) lines were grown in hydroponic conditions with either 50uM ferric nitrate or 100uM ferric nitrate. After 10 days, half the plants were harvested (total root tissue). At 12 days after planting, iron was added to plants grown in low iron conditions bringing them up to sufficient iron growth conditions. Root tissue was harvested for the remaining plants at 14 days after planting. Gene expression analysis from root tissue of two Near Isogenic Lines (NILs), Clark (PI548553) and IsoClark (PI547430), grown in iron stress or iron stress recovered conditions.
Project description:Antibiotic resistance is a growing global health threat. Most research has focused on understanding how mobile genetic elements are acquired by pathogenic bacteria. However, bacteria have intrinsic chromosomally encoded systems to protect themselves against antimicrobial assault. Our lab has uncovered such a system in uropathogenic E. coli. PmrAB and QseBC are connected two component systems that confer resistance to polymyxins, a last resort antibiotic. The histidine kinase PmrB responds to ferric iron and activates its cognate response regulator PmrA, as well as the non-cognate response regulator QseB. QseC, the other histidine kinase plays an important role in resetting the system. To better understand how PmrAB and QseBC mediate polymyxin resistance, this project aimed to elucidate the regulon of the two response regulators QseB and PmrA in the uropathogenic E. coli strain UTI89. In this strain, isogenic mutants were made lacking qseB and pmrA singly and together. These strains and wild-type UTI89 were stimulated with ferric iron and samples for RNA sequencing were taken prior to stimulation and at 15 and 60 minutes post stimulation. Samples were then sent for sequencing on the Illumina platform and analyzed using Rockhopper software.