Project description:RNA interference (RNAi) is a cell-intrinsic antiviral defense conserved in diverse organisms. However, the mechanism by which mammalian antiviral RNAi is regulated is largely unknown. Herein, we uncover that STUB1, an E3 ubiquitin ligase, interacts with and ubiquitinates AGO2, the core component of RNAi pathway, resulting in the degradation of AGO2 via ubiquitin-proteasome system. Additionally, STUB1 can induce the degradation of the other mammalian AGO proteins including AGO1, AGO3, and AGO4. Our further study reveals that STUB1 also interacts with and mediates the ubiquitination of Dicer, the endoribonuclease responsible for siRNA or miRNA biogenesis, via K48-linked poly-ubiquitin, which induces the degradation of Dicer and its specialized form, termed antiviral Dicer (aviDicer) that usually expresses in stem cells. Loss of STUB1 upregulated Dicer and AGO2, thereby enhancing antiviral RNAi to effectively inhibit viral RNA replication in mammalian cells. In vivo, the STUB1 deficiency markedly enhanced the production of virus-derived siRNAs and elicited a potent antiviral effect against Enterovirus-A71 (EV-A71) infection in newborn mouse. Our findings demonstrate STUB1 as a novel negative regulator of RNAi by mediating the ubiquitination and degradation of Dicer and AGO proteins, and provide novel insights into the regulatory mechanism of antiviral RNAi in mammals.
Project description:RNA interference (RNAi) is an intrinsic antiviral immune mechanism conserved in diverse eukaryotic organisms. However, the mechanism by which antiviral RNAi in mammals is regulated is poorly understood. In this study, we uncovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1) was a new regulator of the RNAi machinery in mammals. We found that STUB1 interacted with and ubiquitinated AGO2, and targeted it for degradation in a chaperon-dependent manner. STUB1 promoted the formation of Lys48 (K48)-linked polyubiquitin chains on AGO2, and facilitated AGO2 degradation through ubiquitin-proteasome system. In addition to AGO2, STUB1 also induced the protein degradation of AGO1, AGO3 and AGO4. Further investigation revealed that STUB1 also regulated Dicer's ubiquitination via K48-linked polyubiquitin and induced the degradation of Dicer as well as its specialized form, termed antiviral Dicer (aviDicer) that expresses in mammalian stem cells. Moreover, we found that STUB1 deficiency up-regulated Dicer and AGO2, thereby enhancing the RNAi response and efficiently inhibiting viral replication in mammalian cells. Using the newborn mouse model of Enterovirus A71 (EV-A71), we confirmed that STUB1 deficiency enhanced the virus-derived siRNAs production and antiviral RNAi, which elicited a potent antiviral effect against EV-A71 infection in vivo. In summary, our findings uncovered that the E3 ubiquitin ligase STUB1 was a general regulator of the RNAi machinery by targeting Dicer, aviDicer and AGO1-4. Moreover, STUB1 regulated the RNAi response through mediating the abundance of Dicer and AGO2 during viral infection, thereby providing novel insights into the regulation of antiviral RNAi in mammals.
Project description:Dicer and Argonaute2 (Ago2) gene is involving in microRNA (miRNA) maturation. Knockdown of these genes has great impact on miRNA expression profiles. We used microarrays to detail the miRNA expression profiles in Dicer- and Ago2-knockdown HeLa cells and demonstarted that the significant difference between Ago2-knockdown and Dicer- and Ago2-co-knockdown HeLa cells were not found.
Project description:Cholangiocarcinoma (CCA) is a highly malignant tumor characterized by a lack of effective targeted therapeutic strategies. The protein UHRF1 plays a pivotal role in the preservation of DNA methylation and works synergistically with DNMT1. Posttranscriptional modifications (PTMs), such as ubiquitination, play indispensable roles in facilitating this process. Nevertheless, the specific PTMs that regulate UHRF1 in CCA remain unidentified. We confirmed the interaction between STUB1 and UHRF1 through mass spectrometry analysis. Furthermore, we investigated the underlying mechanisms of the STUB1-UHRF1/DNMT1 axis via co-IP experiments, denaturing IP ubiquitination experiments, nuclear‒cytoplasmic separation and immunofluorescence experiments. STUB1-UHRF1/DNMT1-mediated DNA methylation plays a crucial role in promoting the epigenetic silencing of tumor suppressor genes (TSGs) and facilitating tumor progression. To investigate the specific TSGs regulated by the STUB1-UHRF1/DNMT1 axis in CCA cells, RNA-seq analysis of overexpressed STUB1 and negative control TFK1 cells was performed.
Project description:Analysis of mRNA changes in HeLa cells following Ago2 or Dicer depletion. Dicer, a cytoplasmic RNase III, generates the mature form of small RNAs including microRNA. Ago2 is a component of an effector complex of microRNA. Keywords: gene expression array-based (RNA / in situ oligonucleotide)
Project description:Analysis of mRNA changes in HeLa cells following Ago2 or Dicer depletion. Dicer, a cytoplasmic RNase III, generates the mature form of small RNAs including microRNA. Ago2 is a component of an effector complex of microRNA. Keywords: gene expression array-based (RNA / in situ oligonucleotide) siRNA against Ago2 or Dicer were trasnfected into HeLa cells. siRNA against GFP was used as a control. Biologically duplicated total RNAs were prepared from HeLa cells, 24 hrs and 48 hrs after siRNA transfection.
Project description:Hypoxia is the most prominent feature in human solid tumors and induces activation of hypoxia-inducible factors and their downstream genes to promote cancer progression. However, whether and how hypoxia regulates overall mRNA homeostasis is unclear. Here we show that hypoxia inhibits global-mRNA decay in cancer cells. Mechanistically, hypoxia induces the interaction of AGO2 with HOIL-1L/HOIP, two crucial components of a linear ubiquitin chain assembly complex, which co-localizes with miRNA-induced silencing complex and in turn catalyzes AGO2 occurring Met1-linked linear ubiquitination (M1-Ubi). A series of biochemical experiments reveal that M1-Ubi of AGO2 restrains miRNA-mediated gene silencing. Moreover, combination analyses of the AGO2-associated mRNA transcriptome by RIP-Seq and the mRNA transcriptome by RNA-Seq confirm that AGO2 M1-Ubi interferes miRNA-targeted mRNA recruiting to AGO2, and thereby facilitates accumulation of global mRNAs. By this mechanism, short-term hypoxia may protect overall mRNAs and enhances stress tolerance, whereas long-term hypoxia in tumor cells results in serious changing the entire gene expression profile, which is a driving force in the dynamic process of cell malignant evolution.
Project description:To determine the spectrum of miRNA targets regulated following Dicer deletion, we performed argonaute 2 (AGO2)-RNA Immunoprecipitation (RIP)-microarray in bone marrow-derived macrophages (BMDMs) from LysM-Cre/Dicerflox/flox/Apoe–/– and LysM-Cre/Dicerwt/wt/Apoe–/– mice. This analysis combined with miRNA profiling in Dicer wild type (WT) and knockout (KO) BMDMs may help to identify the miRNA targets regulated by Dicer deletion.
Project description:The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about 36 regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identified STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This was corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response was increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome.