Project description:Enterovirus 71 (EV71) belongs to human enterovirus species A of the genus Enterovirus within the family Picornaviridae. We established transformant cells by transfection of mouse cells with genomic DNA from human cells and then detected two EV71-susceptible cell lines. Using microarray with the two cell lines we found that scavenger receptor B2 is a cellular receptor for EV71.
Project description:Analysis of transcript abundance estimates as a function of child soldier status, PTSD symptoms, and psychological resilience. Gene expression profiling was conducted on dried blood spot (DBS) samples collected from community dwelling adolescents and young adults in Nepal. Approximatley half of the sample were former child soldiers in the Nepal People's War and the other half were demographically similiar civilian non-combatants. In addition to basic demographic characteristics (age, sex, ethnic minority status, social caste status, education level), participants were also assessed on syptoms of post-traumatic stress (PTS, assessed by a culturally adapted version of The Child PTSD Symptom Scale; Kohrt BA, et al. (2011) Validation of cross-cultural child mental health and psychosocial research instruments: adapting the Depression Self-Rating Scale and Child PTSD Symptom Scale in Nepal. BMC Psychiatry 11(1):e127, with higher values indicating greater PTSD symptoms) and psychological resilience (assessed by a culturally adapted version of the Resilience Scale; Wagnild GM & Young HM (1993) Development and psychometric evaluation of the Resilience Scale. Journal of Nursing Measurement, with higher values indicating greater resilience). Dichotomous variables were coded 0=no/absent and 1=yes/present. Valid gene expression data are available for 254 samples.
Project description:To further understand the molecular pathogenesis of Enterovirus 71 infection, we profiled cellular microRNAs of brain tissue from suckling Kunming mice infected with EV71 and uninfected mice as comparison.
Project description:Enterovirus 71 (EV71), a member of the Enterovirus genus in the Picornaviridae family, was first recognized as a dermotrophic virus that usually cause mild, self-limiting hand-foot-and-mouth disease (HFMD). However, EV71 infection can sometimes induce a variety of severe neurological complications, pulmonary edema and even death. Here, we aimed to provide an overview of proteomics characterization of EV71-infected brain and lung tissues.
Project description:Ribosome profiling (Ribo-Seq) (maps positions of translating ribosomes on the transcriptome) analysis of human (RD) cells infected with enterovirus strains EV7, EV71, and PV1.
Project description:Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) are the predominant etiological agents of hand, foot, and mouth disease (HFMD) and both belong to the human enterovirus A species of the Picornaviridae family. These viruses share similar genetic homology, although the clinical manifestations of HFMD caused by the two viruses have some discrepancies. Furthermore, the underlying mechanisms leading to these differences remain unclear. microRNAs (miRNAs) participate in numerous biological or pathological processes, including host responses to viral infections, by targeting messenger RNAs (mRNAs) for translational repression or degradation. Here, we focused on differences in miRNA expression patterns in peripheral blood mononuclear cells (PBMCs) of rhesus monkeys infected with EV71 or CA16 at different time points using high-throughput sequencing technology. For the first time, this study demonstrated that EV71 and CA16 infection result in specific miRNA expression patterns in PBMCs.
Project description:Synonymous recoding of viral genome can attenuate their replication, but can have pleiotropic effects, with multiple mechanisms contributing to attenuation. We set out to design recoded viral genomes whose attenuation was specific and conditional. The zinc finger antiviral protein (ZAP) recognizes CpG dinucleotides and targets CpG-rich RNAs for depletion, but RNA features such as CpG numbers, spacing and surrounding nucleotide composition that enable specific modulation by ZAP are undescribed. Using synonymously mutated HIV-1 genomes, we define several sequence features that govern ZAP sensitivity and stable attenuation. Using features defined using HIV-1, we then designed a mutant enterovirus A71 genome whose attenuation was also stable and strictly ZAP-dependent, both in cell culture and in mice. This conditionally attenuated enterovirus A71 elicited neutralizing antibodies that were protective against wild-type enterovirus 71 infection and disease. Elucidation of the determinants of ZAP sensitivity can thus enable the rational design of conditionally attenuated viral vaccines.