Project description:Here we report 16s rRNA data in gut microbiota of hepatocellular carcinoma (HCC) patients with HBV induced HCC (HBVC) and non-HBV induced HCC (NHBVC) compared with healthy volunteers. A total of 2047 operational taxonomic units (OTUs) were identified in the sequence data. Our data shows that the NHBVC patients harbor lower anti-inflammatory bacteria and more pro-inflammatory bacteria, while the HBVC patients harbor more anti-inflammatory bacteria.
Project description:To explore the miRNA expression profiles between HBV-related Hepatocellular carcinoma and no HBV-related Hepatocellular carcinoma To performe microarray analysis to detect the miRNA expression profiles between HBV-related Hepatocellular carcinoma and no HBV-related Hepatocellular carcinoma
Project description:The expression profiling of HBV-transfected Huh-7 cells and control cells. Hepatocellular carcinoma (HCC) is one of major malignant disease worldwide, and patients with chronic hepatitis B virus (HBV) infection have a high risk of developing HCC. Via microarray gene expression analysis, we detected the gene alteration in HBV transfected hepatoma cells.
Project description:Hepatitis B virus (HBV) is known for its ability to interact with the host cell DNA methylation machinery. In HBV-infected hepatocytes, this interaction leads to chronic liver diseases, including hepatocellular carcinoma (HCC). We studied the extent of genomic changes induced by natural HBV infection in human primary hepatocytes. Transcriptome and methylome profiles were obtained at different time points post-infection to identify HBV-specific alterations. Although gene expression and DNA methylation do not directly correlate, they both seem to reflect the effect of cell culture and viral infection at different levels.These changes in the hepatocyte cellular program shed light on the initial events leading to HBV-associated liver diseases.
Project description:To explore the lncRNAs and mRNA expression profiles between HBV-related Hepatocellular carcinoma and no HBV-related Hepatocellular carcinoma To performe microarray analysis to detect the lncRNAs and mRNA expression profiles between HBV-related Hepatocellular carcinoma and no HBV-related Hepatocellular carcinoma
Project description:Purpose: To gain molecular insights of HBV integration that may contribute to HCC tumorigenesis, we performed whole transcriptome sequencing and whole genome copy number profiling of hepatocellular carcinoma (HCC) samples from 50 Chinese patients. Conclusions: This is the first report on the molecular basis of the MLL4 integration driving MLL4 over-expression. HBV-MLL4 integration occurred frequently in Chinese HCC patients, representing a unique molecular segment for HCC with HBV infection. We profiled 50 Chinese Hepatocellular Carcinoma patients and 14 adjacent tissues using Agilent 244K array CGH technology. 50 Tumor samples also did RNASeq profiling.
Project description:We applied small RNA Solexa sequencing technology to identify microRNA expression in human liver samples from surgically removed liver tissues including three normal liver tissues (distal normal liver tissue of liver hemangioma), an hepatitis B virus (HBV)-infected liver, a severe chronic hepatitis B liver, two HBV-related hepatocellular carcinoma (HCC), an hepatitis C virus (HCV)-related HCC, and an HCC without HBV or HCV infection. All samples were collected with the informed consent of the patients and the experiments were approved by the ethics committee of Second Military Medical University, Shanghai, China. We investigated the miRNome in human normal liver and suggested some deregulated abundantly expressed microRNAs in HCC. center_name: National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China. Examination of miRNome in human liver samples from surgically removed liver tissues including three normal liver tissues (distal normal liver tissue of liver hemangioma), an hepatitis B virus (HBV)-infected liver tissue, a severe chronic hepatitis B liver tissue, an HBV-related hepatocellular carcinoma (HCC) tissue and adjacent liver tissues of different regions,an HBV-related HCC tissue and adjacent liver tissue, an hepatitis C virus (HCV)-related HCC tissue and adjacent liver tissue, and an HCC without HBV or HCV infection and adjacent liver tissue. All 15 human liver tissue samples.
Project description:Chronic liver disease is becoming a leading cause of illness and mortality in people living with human immunodeficiency virus (HIV) (PLWH) undergoing suppressive anti-retroviral therapy. Its main etiology has been reported to be coinfection with hepatitis B (HBV) and C (HCV) viruses. Accumulating evidence indicate chronic liver inflammation and fibrosis can potentially lead to the development of hepatocellular carcinoma (HCC). Therefore, monitoring of the disease progression in PLWH is required. The present study aimed to explore the plasma protein profiles of patients with HIV infection and those coinfected with HBV and HCV using shotgun proteomics.
Project description:MicroRNAs (miRNAs) exhibit essential regulatory functions related to cell growth, apoptosis, development and differentiation. Dysregulated expression of miRNAs is associated with a wide variety of human diseases. As such miRNA signatures are valuable as biomarkers for disease and for making treatment decisions. Hepatitis B virus (HBV) is a major risk factor for hepatocellular carcinoma (HCC). Here we screened for miRNAs in chronic HBV associated HCC. To evaluate the effect of HBV infection on the change in expression of miRNAs, 12 pairs of samples from HCC and non-tumor tissues (including 6 HBV-positive HCC and 6 HBV-negative HCC and their non-tumor tissues) were collected. The extracted RNAs were evaluated to detect the expression of miRNAs. Using ANOVA to screen the differential expression of miRNAs at P-value ⤠0.01, fold change ⥠2 or ⤠0.5, 225 miRNAs were detected.
Project description:Purpose: To gain molecular insights of HBV integration that may contribute to HCC tumorigenesis, we performed whole transcriptome sequencing and whole genome copy number profiling of hepatocellular carcinoma (HCC) samples from 50 Chinese patients. Results: We identified a total of 33 HBV-human integration sites in 16 of 44 HBV-positive HCC tissues, which were enriched in HBV genotype C-infected patients. In addition, significantly recurrent HBV-MLL4 integration (18%). This dataset is part of the TransQST collection.