Project description:Despite the fact that deep sea mining is becoming more popular nowadays in terms of obtaining metals ores for daily life purposes, its potential impact to the deep sea habitat, which is originally stable and converse, stills remains uncertain. In order to estimate and regulate the imapct of deep sea mining activities, an in-situ exposure experiment is performed to observe the change in proteomics expression of the deep-sea scvangers, Abyssorchomene distinctus, to copper exposure. This project aims to suggest a potenial protein bio-marker in Abyssorchomene distinctus to assess the impact of mining activities towards deep sea organisms and also discuss the potential application of other deep sea in-situ exposure experiment in the future.
Project description:Endozoicomonas are prevalent, abundant bacterial associates of marine animal hosts, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify putative interactions within the coral holobiont, we characterized a novel Endozoicomonas isolate and assessed its transcriptomic and proteomic responses to tissue extracts of its native host, the Red Sea coral Acropora humilis, at control and elevated temperatures. We show that host cues stimulated differential expression of genes assumed to be involved in the modulation of the host immune response by Endozoicomonas, such as flagellar assembly genes, ankyrins, ephrins, and serpins. Proteome analysis revealed the upregulation of vitamin B1 and B6 biosynthetic as well as glycolytic processes by Endozoicomonas in response to host cues. We further demonstrate that the inoculation of A. humilis with its native Endozoicomonas strain resulted in enhanced holobiont health metrics, such as host tissue protein content and algal symbiont photosynthetic efficiency. Behavioral, physiological, and metabolic changes in Endozoicomonas may be key to the onset and function of mutualistic interactions within the coral holobiont, and our results suggest that the priming of Endozoicomonas to a symbiotic lifestyle may involve modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas presumably plays an important role in holobiont nutrient cycling and may therefore be implicated in its health, acclimatization, and ecological adaptation.
Project description:Black corals, ecologically important cnidarians found from shallow to deep ocean depths, form a strong yet flexible skeleton of sclerotized chitin and other biomolecules including proteins. The structure and mechanical properties of the chitin component of the skeleton have been well-characterized. However, the protein component has remained a mystery. Here we used liquid chromatography-tandem mass spectrometry to sequence proteins extracted from two species of common Red Sea black corals following either one or two cleaning steps. We detected hundreds of proteins between the two corals, nearly 70 of which are each others’ reciprocal best BLAST hit. Unlike stony corals, only a few of the detected proteins were moderately acidic (biased toward aspartic and/or glutamic acid residues) suggesting less of a role for these types of proteins in black coral skeleton formation as compared to stony corals. No distinct chitin binding domains were found in the proteins, but proteins annotated as having a role in protein and chitin modifications were detected. Our results support the integral role of proteins in black coral skeleton formation, structure, and function.
2022-06-05 | PXD032043 | Pride
Project description:Microbiomes of Deep-sea Corals and Crinoids
Project description:The deep-sea tubeworm Riftia pachyptila is a model system for a mutualistic association: The adult worm has no digestive system, but completely relies on one phylotype of endosymbiotic chemosynthetic bacteria for nutrition. The bacteria, in turn, are provisioned by the host. Metabolism and physiology of this symbiosis, particularly of the uncultured symbiont, have been subject to various studies. Yet, how both partners interact on the molecular level remains largely unknown. To study these host-symbiont interactions in detail, we sequenced the R. pachyptila host transcriptome de novo, and conducted comprehensive metaproteomic comparisons of symbiont-containing and symbiont-free R. pachyptila tissues under energy-rich and energy-limiting conditions. Our results demonstrate that R. pachyptila invests a considerable part of its proteome to provision the symbionts with inorganic compounds. It acquires symbiont-derived biomass primarily by digesting parts of the symbiont population. The R. pachyptila immune system apparently not only protects the holobiont from pathogens, but is also involved in symbiont population control. The symbiont expresses a repertoire of proteins dedicated to communication with the host, including eukaryote-like proteins that may counteract phagocytosis. During energy limitation, i.e., when reduced sulfur compounds are lacking, the host apparently increases symbiont digestion. We show here an intricate network of interaction pathways that shapes the R. pachyptila holobiont. Together with the metabolic flexibility of the association under varying energy conditions, this probably forms the basis for the success of this tight association under the highly challenging deep-sea conditions.
Project description:This is a dataset associated with an article in the journal Metabolomics titled "Metabolomic richness and fingerprints of deep-sea coral species and populations."
Abstract:
Introduction: From shallow water to the deep sea, corals form the basis of diverse communities with significant ecological and economic value. These communities face many anthropogenic stressors including energy and mineral extraction activities, ocean acidification and rising sea temperatures. Corals and their symbionts produce a diverse assemblage of compounds that may help provide resilience to some of these stressors. Objectives: We aim to characterize the metabolomic diversity of deep-sea corals in an ecological context by investigating patterns across space and phylogeny. Methods: We applied untargeted Liquid Chromatography-Mass Spectrometry to examine the metabolomic diversity of the deep-sea coral, Callogorgia delta, across three sites in the Northern Gulf of Mexico as well as three other deep-sea corals, Stichopathes sp., Leiopathes glaberrima, and Lophelia pertusa, and a shallow-water species, Acropora palmata. Results: Different coral species exhibited distinct metabolomic fingerprints and differences in metabolomic richness including core ions unique to each species. C. delta was generally least diverse while Lophelia pertusa was most diverse. C. delta from different sites had different metabolomic fingerprints and metabolomic richness at individual and population levels, although no sites exhibited unique core ions. Two core ions unique to C. delta were putatively identified as diterpenes and thus may possess a biologically important function. Conclusion: Deep-sea coral species have distinct metabolomic fingerprints and exhibit high metabolomic diversity at multiple scales which may contribute to their capabilities to respond to both natural and anthropogenic stressors, including climate change.
Project description:Colonization of deep-sea hydrothermal vents by invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers of these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels
2019-02-13 | GSE124699 | GEO
Project description:RNAseq of deep-sea corals exposed to anthropogenic pollutants
| PRJNA708307 | ENA
Project description:Prokaryotes associated to deep sea CWC corals from museum archives