Project description:Black corals, ecologically important cnidarians found from shallow to deep ocean depths, form a strong yet flexible skeleton of sclerotized chitin and other biomolecules including proteins. The structure and mechanical properties of the chitin component of the skeleton have been well-characterized. However, the protein component has remained a mystery. Here we used liquid chromatography-tandem mass spectrometry to sequence proteins extracted from two species of common Red Sea black corals following either one or two cleaning steps. We detected hundreds of proteins between the two corals, nearly 70 of which are each others’ reciprocal best BLAST hit. Unlike stony corals, only a few of the detected proteins were moderately acidic (biased toward aspartic and/or glutamic acid residues) suggesting less of a role for these types of proteins in black coral skeleton formation as compared to stony corals. No distinct chitin binding domains were found in the proteins, but proteins annotated as having a role in protein and chitin modifications were detected. Our results support the integral role of proteins in black coral skeleton formation, structure, and function.
2022-06-05 | PXD032043 | Pride
Project description:RNAseq of deep-sea corals exposed to anthropogenic pollutants
| PRJNA708307 | ENA
Project description:Prokaryotes associated to deep sea CWC corals from museum archives
Project description:Despite the fact that deep sea mining is becoming more popular nowadays in terms of obtaining metals ores for daily life purposes, its potential impact to the deep sea habitat, which is originally stable and converse, stills remains uncertain. In order to estimate and regulate the imapct of deep sea mining activities, an in-situ exposure experiment is performed to observe the change in proteomics expression of the deep-sea scvangers, Abyssorchomene distinctus, to copper exposure. This project aims to suggest a potenial protein bio-marker in Abyssorchomene distinctus to assess the impact of mining activities towards deep sea organisms and also discuss the potential application of other deep sea in-situ exposure experiment in the future.
Project description:We developed and validated a 96-deep well plate-based culturing model named Mipro to maintain individuals’ microbiomes. The Mipro model quintupled viable bacteria count while maintained the functional and compositional profiles of individuals’ gut microbiomes.
Project description:This is a dataset associated with an article in the journal Metabolomics titled "Metabolomic richness and fingerprints of deep-sea coral species and populations."
Abstract:
Introduction: From shallow water to the deep sea, corals form the basis of diverse communities with significant ecological and economic value. These communities face many anthropogenic stressors including energy and mineral extraction activities, ocean acidification and rising sea temperatures. Corals and their symbionts produce a diverse assemblage of compounds that may help provide resilience to some of these stressors. Objectives: We aim to characterize the metabolomic diversity of deep-sea corals in an ecological context by investigating patterns across space and phylogeny. Methods: We applied untargeted Liquid Chromatography-Mass Spectrometry to examine the metabolomic diversity of the deep-sea coral, Callogorgia delta, across three sites in the Northern Gulf of Mexico as well as three other deep-sea corals, Stichopathes sp., Leiopathes glaberrima, and Lophelia pertusa, and a shallow-water species, Acropora palmata. Results: Different coral species exhibited distinct metabolomic fingerprints and differences in metabolomic richness including core ions unique to each species. C. delta was generally least diverse while Lophelia pertusa was most diverse. C. delta from different sites had different metabolomic fingerprints and metabolomic richness at individual and population levels, although no sites exhibited unique core ions. Two core ions unique to C. delta were putatively identified as diterpenes and thus may possess a biologically important function. Conclusion: Deep-sea coral species have distinct metabolomic fingerprints and exhibit high metabolomic diversity at multiple scales which may contribute to their capabilities to respond to both natural and anthropogenic stressors, including climate change.
2019-02-11 | MSV000083431 | GNPS
Project description:REDEEM: Resilience of anthozoan corals to deep-sea mining, an holobiont approach
Project description:The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation.
Project description:The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|) ≥1, FDR (false discovery rate) <0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation.