Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
2018-10-19 | GSE121473 | GEO
Project description:Compost particles were sequenced for nosZ type denitrifying bacterial community
| PRJNA1030506 | ENA
Project description:denitrifying gene (nosZ) under different land use types
| PRJNA637225 | ENA
Project description:denitrifying gene (nosZ) of organic, integrated and conventional soils
Project description:16s RNA gene sequencing data from seawater, bed sediment and steel corrosion samples from Shoreham Harbour, UK, collected to allow bacterial species comparisons between microbially influenced corrosion, the surrounding seawater, and the sea bed sediment at the seafloor and 50cm depth below seafloor.
Project description:Marine intertidal organisms commonly face hypoxic stress during low tide emersion; moreover, eutrophic conditions and sediment nearness could lead to hypoxic phenomena; it is indeed important to understand the molecular processes involved in the response to hypoxia. In this study the molecular response of the Pacific oyster Crassostrea gigas to prolonged hypoxia (2 mg O2 L-1 for 20 d) was investigated under experimental conditions. A transcriptomic approach was employed using a cDNA microarray of 9058 C. gigas clones to highlight the genetic expression patterns of the Pacific oyster under hypoxic conditions. Lines of oysters resistant (R) and susceptible (S) to summer mortality were used in this study. This is the first study employing microarrays to characterize the genetic markers and metabolic pathways responding to hypoxic stress in C. gigas.
Project description:Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered “generalist” and “specialist” archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 11-29% of the abundant NRE archetypes. Archetypes found in a particular site, “specialists”, were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe2+. A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H2S, respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among denitrifying communities and supports the essential role of individual community members in overall ecosystem function.
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles.
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles. A total of 56 samples were collected that represent water and sediment samples from 14 sample sites over two different time points (November 18 and 25, 2011).