Project description:N retention in soils can be stimulated by microorganisms carrying out dissimilatory reduction of nitrate to ammonia (DNRA), a respiratory activity that converts nitrate and/or nitrite to ammonia. Geobacter lovleyi has recently being recognized as a key driver of DNRA, providing a model to investigate the environmental signals that promote nitrate ammonification. Here we show that low nitrate concentrations (5mM) induce DNRA in G. lovleyi independently of the concentration of the electron donor, thus challenging the prevailing view that high carbon-to-nitrogen (C/N) ratio triggers this process. The nitrate transcriptome revealed a complex metabolic network of periplasmic (Nap) and cytoplasmic (Nar) nitrate reductase systems for the reduction of nitrate to nitrite. The transcriptome also included a canonical (NrfA-1), two Geobacter-specific nitrite reductases (NrfA-2 and NrfA-3) and a membrane-bound NrfH cytochrome, which electronically connects NrfA to the menaquinone pool. Flagellar motility and chemotaxis proteins were also among the most upregulated genes in the nitrate cultures, consistent with an adaptive response that allows Geobacter cells to sense and access the limited supply of nitrate in anaerobic zones of the soils and sediments. This is the first demonstration of the ability of the bacteria to use DNRA pathway under nitrate limiting conditions independently of the C/N ratio. G. lovleyi provides a model for study DNRA process and it is a good candidate that could contribute in the retention of nitrogen in soils leading to efficient use of nitrogen containing fertilizers and preventing nitrate leaching.
Project description:Marine intertidal organisms commonly face hypoxic stress during low tide emersion; moreover, eutrophic conditions and sediment nearness could lead to hypoxic phenomena; it is indeed important to understand the molecular processes involved in the response to hypoxia. In this study the molecular response of the Pacific oyster Crassostrea gigas to prolonged hypoxia (2 mg O2 L-1 for 20 d) was investigated under experimental conditions. A transcriptomic approach was employed using a cDNA microarray of 9058 C. gigas clones to highlight the genetic expression patterns of the Pacific oyster under hypoxic conditions. Lines of oysters resistant (R) and susceptible (S) to summer mortality were used in this study. This is the first study employing microarrays to characterize the genetic markers and metabolic pathways responding to hypoxic stress in C. gigas.
Project description:16s RNA gene sequencing data from seawater, bed sediment and steel corrosion samples from Shoreham Harbour, UK, collected to allow bacterial species comparisons between microbially influenced corrosion, the surrounding seawater, and the sea bed sediment at the seafloor and 50cm depth below seafloor.
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles.
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles. A total of 56 samples were collected that represent water and sediment samples from 14 sample sites over two different time points (November 18 and 25, 2011).