Project description:Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in-depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 hours after the treatment. A library of peptides that include BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Project description:Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), causing significant yield losses in economically important Mediterranean crops. Almond leaf scorch (ALS) is currently one of the most relevant diseases observed in Spain, and no cure has been found to be effective for this disease. In previous reports, the peptide BP178 has shown a strong bactericidal activity in vitro against X. fastidiosa and to other plant pathogens, and to trigger defense responses in tomato plants. In the present work, BP178 was applied by endotherapy to almond plants cv. Avijor using preventive and curative strategies. The capacity of BP178 to reduce the population levels of X. fastidiosa and to decrease disease symptoms, and its persistence over time were demonstrated under greenhouse conditions. The most effective treatment consisted of a combination of preventive and curative applications and the peptide was detected in the stem up to 60 days post-treatment. Priming plants with BP178 induced defense responses mainly through the salicylic acid pathway, but also overexpressed some genes of the jasmonic acid and ethylene pathways. It is concluded that the bifunctional peptide is a promising candidate to be further developed to manage ALS caused by X. fastidiosa.
Project description:The bacterium Xylella fastidiosa (Xf) is a plant endophyte native to the Americas that causes diseases in many crops of economic importance (grapevine, Citrus, Olive trees etc). Xf has been recently detected in several regions outside of its native range including Europe where little is known about its potential geographical expansion. We collected data documenting the native and invaded ranges of the Xf subspecies fastidiosa, pauca and multiplex and fitted bioclimatic species distribution models (SDMs) to assess the potential climate suitability of European continent for those pathogens. According to model predictions, the currently reported distribution of Xf in Europe is small compared to the large extent of climatically suitable areas. The regions at high risk encompass the Mediterranean coastal areas of Spain, Greece, Italy and France, the Atlantic coastal areas of France, Portugal and Spain as well as the southwestern regions of Spain and lowlands in southern Italy. The extent of predicted climatically suitable conditions for the different subspecies are contrasted. The subspecies multiplex, and to a certain extent the subspecies fastidiosa, represent a threat to most of Europe while the climatically suitable areas for the subspecies pauca are mostly limited to the Mediterranean basin. These results provide crucial information for the design of a spatially informed European-scale integrated management strategy, including early detection surveys in plants and insect vectors and quarantine measures.
Project description:Pierce’s disease, caused by the bacterium Xylella fastidiosa, is one of the most devastating diseases of cultivated grapes. To test the long-standing hypothesis that Pierce’s disease results from pathogen-induced drought stress, we used the Affymetrix Vitis GeneChip to compare the transcriptional response of Vitis vinifera to Xylella infection, water deficit, or a combination of the two stresses. The results reveal a massive redirection of gene transcription involving 822 genes with a minimum 2-fold change (p<0.05), including the upregulation of transcripts for phenylpropanoid and flavonoid biosynthesis, pathogenesis related (PR) proteins, absisic acid (ABA)/jasmonic acid (JA)-responsive transcripts, and down-regulation of transcripts related to photosynthesis, growth and nutrition. Although the transcriptional response of plants to Xylella infection was largely distinct from the response of healthy plants to water stress, we find that 138 of the pathogen-induced genes exhibited a significantly stronger transcriptional response when plants were simultaneously exposed to infection and drought stress, suggesting a strong interaction between disease and water deficit. This interaction between drought stress and disease was mirrored in planta at the physiological level for aspects of water relations and photosynthesis, and in terms of the severity of disease symptoms and the extent of pathogen colonization, providing a molecular correlation of the classical concept of the disease triangle where environment impacts disease severity.
Project description:Xylella fastidiosa is an economically important bacterial plant pathogen. With insights gained from 72 genomes, this study investigated differences among the three main subspecies, which have allopatric origins: X. fastidiosa subsp. fastidiosa, multiplex, and pauca The origin of recombinogenic X. fastidiosa subsp. morus and sandyi was also assessed. The evolutionary rate of the 622 genes of the species core genome was estimated at the scale of an X. fastidiosa subsp. pauca subclade (7.62 × 10-7 substitutions per site per year), which was subsequently used to estimate divergence time for the subspecies and introduction events. The study characterized genes present in the accessory genome of each of the three subspecies and investigated the core genome to detect genes potentially under positive selection. Recombination is recognized to be the major driver of diversity in X. fastidiosa, potentially facilitating shifts to novel plant hosts. The relative effect of recombination in comparison to point mutation was calculated (r/m = 2.259). Evidence of recombination was uncovered in the core genome alignment; X. fastidiosa subsp. fastidiosa in the United States was less prone to recombination, with an average of 3.22 of the 622 core genes identified as recombining regions, whereas a specific clade of X. fastidiosa subsp. multiplex was found to have on average 9.60 recombining genes, 93.2% of which originated from X. fastidiosa subsp. fastidiosa Interestingly, for X. fastidiosa subsp. morus, which was initially thought to be the outcome of genome-wide recombination between X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex, intersubspecies homologous recombination levels reached 15.30% in the core genome. Finally, there is evidence of X. fastidiosa subsp. pauca strains from citrus containing genetic elements acquired from strains infecting coffee plants as well as genetic elements from both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex In summary, our data provide new insights into the evolution and epidemiology of this plant pathogen.IMPORTANCEXylella fastidiosa is an important vector-borne plant pathogen. We used a set of 72 genomes that constitutes the largest assembled data set for this bacterial species so far to investigate genetic relationships and the impact of recombination on phylogenetic clades and to compare genome content at the subspecies level, and we used a molecular dating approach to infer the evolutionary rate of X. fastidiosa The results demonstrate that recombination is important in shaping the genomes of X. fastidiosa and that each of the main subspecies is under different selective pressures. We hope insights from this study will improve our understanding of X. fastidiosa evolution and biology.