Project description:A transcriptomic time-course study was performed on the senescence process in flag leaves of the spring wheat cultivar Bobwhite grown in the green-house. Leaf samples were harvested at eight time-points from the time of ear emergence until 50% yellowing of the harvested leaf sample.
Project description:Not much is known about the molecular processes involved during gravitropism in monocot plants such as maize. A microarray based study on the expression of genes after a gravity stimulating the maize pulvinus will provide us with valuable information and a better understanding of the underlying molecular processes involved in monocot gravitropism. Objectives for this study included the identification of genes that were regulated at the transcriptional and translation level during gravitropism in the maize pulvinus. This was achieved by microarray analysis of total RNA versus polyribosome associated RNA during a time-course of gravity stimulation of the maize pulvinus. Experiment Overall Design: Six week old maize plants were gravity stimulated by 90º reorientation. Upper (slow elongation) and lower (fast elongation) halves of the most gravity competent pulvini were harvested over a time course ranging from 2 minutes up to one hour (2min, 5 min, 15min, 30min, 60min). Pulvini samples from control (vertical, no gravity stimulation) plants were harvested and labeled as left and right. For each time point, total mRNA and polyribosome-associated mRNA were purified and the transcript profiles analyzed using Affymetrix GeneChip® Maize Genome Arrays. The experiment was repeated twice (two growing seasons) and represent two biological repetitions.
Project description:Strigolactones (SLs) are plant hormones that regulate diverse developmental processes and environmental responses in plants. It has been discovered that SLs play an important role in regulating plant immune resistance to pathogens, but there are currently no reports on their role in the interaction between Nicotiana benthamiana and Tobacco mosaic virus (TMV). In this study, the exogenous application of SLs weakened the resistance of N. benthamiana to TMV, promoting TMV infection, whereas the exogenous application of Tis108, an SL inhibitor, resulted in the opposite effect. Virus-induced gene silencing (VIGS) inhibition of two key SL synthesis enzyme genes, NtCCD7 and NtCCD8, enhanced the resistance of N. benthamiana to TMV. Additionally, we conducted a screening of N. benthamiana related to TMV infection. TMV-infected plants treated with SLs were compared to the control by using RNA-seq. KEGG enrichment analysis and weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) suggested that plant hormone signaling transduction may play a significant role in the SL-TMV-N. benthamiana interactions. This study reveals new functions of SLs in regulating plant immunity and provides a reference for controlling TMV diseases in production.
Project description:Compare gene expression between maize genotype resistant (Pa405) and susceptible (Oh28) to maize dwarf mosaic virus (MDMV) infection 4 days post-inoculation using microarrays.
Project description:We aimed to characterize transcriptomic changes over time (baseline, 2 hours, 48 hours and 96 hours) after nickel-induced contact dermatitis in 6 human probands. As a contrast, 7 patients with SLS-induced irritant contact dermatitis were included. Therefore, the patch tests were applied onto the back of the individuals and punch biopsies were taken at the respective time points. Only skin with clear reactions was further used for transcriptomic analysis. Using gene set enrichment analysis and leukocyte deconvolution algorithm, we were able to identify important immune cell subsets and related functions within the human skin.