Project description:DNA methylation data from rhesus macaque (Macaca mulatta) profiled on the mammalian methylation array (HorvathMammalMethylChip40) which focuses on highly conserved CpGs across mammalian species. We profiled n = 283 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex)
Project description:This SuperSeries is composed of the following subset Series: GSE27459: Human cerebral cortex DNA methylation by MeDIP-Chip GSE27460: Rhesus macaque cerebral cortex DNA methylation profiling by MeDIP-Chip Refer to individual Series
Project description:Aging of population is a great challenge of healthcare. In china, the number of the elderly is rapidly growing, and it was estimated that there will be approximately 400 million citizens above 65 years old in 2050.Study on the changes of brain during aging may help elucidate the mechanism of the pathological process, and hence prevent or treat these neurological diseases.Rhesus macaque (Macaca mulatta) and human have a genetic homology of 95%, and their anatomy structures or physiological process are highly similar, which make rhesus macaque one of the most important nonhuman primate models.Thus, the comparison between the change of protein profile during aging in human and rhesus macaque is still necessary, and the characteristics of proteins that are conservative or divergent are of interest.The aim of the(our) study is to identify the conservative changes of pathways during aging, and to reveal the potential difference between human and rhesus macaque so that relevant studies based on primate models can be interpreted more accurately.
Project description:Sixteen individual rhesus macaque genomes were compared to a reference macaque genome (R354) on custom-designed sure-print 1M oligonucleotide microarray Agilent (Agilent Technologies) aCGH slide per manufacturer’s recommendations. a custom designed Agilent array-based comparative genomic hybridization (aCGH) platform, which comprises 950,843 unique 60-mer oligonucleotide probes specific to the rhesus macaque reference genome (rheMac2), to compare the genomic DNAs of 17 unrelated rhesus macaques of Indian origin to the genome of an unrelated sample from the same species.
Project description:Copy number variants (CNVs) are heritable gains and losses of genomic DNA in normal individuals. While copy number variation is widely studied in humans, our knowledge of CNVs in other mammalian species is more limited. We have designed a custom array-based comparative genomic hybridization (aCGH) platform with 385,000 oligonucleotide probes based on the reference genome sequence of the rhesus macaque (Macaca mulatta), the most widely studied non-human primate in biomedical research. We used this platform to identify 123 CNVs among 10 unrelated macaque individuals, with 24% of the CNVs observed in multiple individuals. We found that segmental duplications were significantly enriched at macaque CNV loci. We also observed significant overlap between rhesus macaque and human CNVs, suggesting that certain genomic regions are prone to recurrent CNV formation and instability, even across a total of ~50 million years of primate evolution (~25 million years in each lineage). Furthermore, for 8 of the CNVs that were observed in both humans and macaques, previous human studies have reported a relationship between copy number and gene expression or disease susceptibility. Therefore, the rhesus macaque offers an intriguing, non-human primate model organism for which hypotheses concerning the specific functions of phenotypically-relevant human CNVs can be tested. Keywords: array-based comparative genomic hybridization, oligonucleotide probes
Project description:The primary goal of this study was to compare the performances of Rhesus Macaque Genome Array and Human Genome U133 Plus 2.0 Array with respect to the detection of differential expressions when rhesus macaque RNA extracts were labeled and hybridized. The secondary goal of this study was to investigate the effect of mismatch position on signal strength in Affymetrix GeneChips by examining naturally occurring mismatches between rhesus macaque transcripts and human probes from Human Genome U133 Plus 2.0 Array. The primary goal of this study was to compare the performances of Rhesus Macaque Genome Array and Human Genome U133 Plus 2.0 Array with respect to the detection of differential expressions when rhesus macaque RNA extracts were labeled and hybridized. The secondary goal of this study was to investigate the effect of mismatch position on signal strength in Affymetrix GeneChips by examining naturally occurring mismatches between rhesus macaque transcripts and human probes from Human Genome U133 Plus 2.0 Array. Keywords: cross hybridization
Project description:Viral gene expression profiling in a rhesus macaque rhadinovirus positive B cell lymphoma obtained from a rhesus macaque experimentally infected with simian immunodeficiency virus and rhesus macaque rhadinovirus strain 17577. The experiment identified two viral open reading frames (ORFs) that were expressed in the lymphoma. Expression of these viral ORFs were confirmed by reverse transcriptase-PCR.