Project description:An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.
Project description:An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.
Project description:Healthcare providers are routinely being assessed for metrics designed to assess the quality of the care they deliver. There is growing consensus that these measurements, which typically assess the percentage of patients meeting a specific standard of care, should be adjusted for the clinical complexity of the providers. This study will assess whether adjusting for the social complexity of the patient panel adds significantly to adjustment for clinical complexity in explaining apparent differences in quality of care provided by Primary care providers and clinics.
Project description:Cornelia de Lange syndrome (CdLS) is a complex multisystem developmental disorder caused by mutations in cohesin subunits and regulators. While the precise molecular mechanisms are not well defined, they point toward a global deregulation of the transcriptional gene expression program. Indeed, cohesin is associated with the boundaries of chromosome domains in addition to enhancers and promoters connecting the 3D genome organization with transcriptional control and gene expression. Here we show that connected gene communities, built with noncoding regulatory elements and genes physically interacting in the 3D chromosomal space, provide a molecular explanation for the pathoetiology of CdLS. Indeed, NIPBL and cohesin are important constituents of connected gene communities, both being centrally positioned at active noncoding regulatory elements. Interestingly, mutations in SMC1A and NIPBL lead to coordinated gene expression changes in connected communities. Our findings suggest a model where CdLS is explained by coordinated modulation of connected gene communities.
Project description:Gene profiling of hepatocytes in early and advanced cirrhotic Rats Two-condition experiment, Advanced cirrhosis vs Control liver, Advanced cirrhosis vs Early cirrhosis. Biological replicates: 5 Advanced cirrhosis, 5 Early cirrhosis, 5 control liver. Each hepatocyte was isolated independently. One replicate per array.
Project description:Genomic complexity in breast tumors has been associated with aggressive disease and less favorable outcome. Recently, we developed an algorithm to calculate complexity scores per chromosome arm in order to sub-classify breast tumors with respect to progression paths and prognosis. We have further developed this method to calculate probe-focused complexity scores per sample, enabling identification of regions with recurrent complexities and grouping of tumors according to genome-wide complexity patterns. Probe-focused complexity scores were calculated based on data derived from aCGH analyses of 394 invasive ductal breast carcinomas. These continuous complexity scores (CCI) were used to identify regions with recurrent high level complexity, and the regional complexity scores were correlated to clinicopathological variables and survival data. A total of 25 recurrent regions with high level complexity were identified. Regional complexities on chromosome arms 8p, 11q and 17q were each associated with clinical parameters associated with aggressive disease. Complexity patterns were different between tumors of different gene expression subtypes. Multivariate Cox analysis revealed that regional complexity on 17q21.32-q21.33 was significantly associated with shorter survival, independent of established clinical variables.