Project description:East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Project description:We use the continuously replacing dentition of Lake Malawi cichlid fishes to understand de-novo tooth replacement in adult vertebrates. In this system, each tooth is replaced in a one-for-one fashion every ~50 days. Here, we explore the source of epithelial stem cells for tooth replacement.
Project description:East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Project description:East African cichlid fishes have radiated in an explosive fashion. The (epi)genetic basis for the abundant phenotypic diversity of these fishes remains largely unknown. As transposable elements (TEs) contribute extensively to genome evolution, we reasoned that TEs may have fuelled cichlid radiations. While TE-derived genetic and epigenetic variability has been associated with phenotypic traits, TE expression and epigenetic silencing remain unexplored in cichlids. Here, we profiled TE expression in African cichlids, and describe dynamic expression patterns during embryogenesis and according to sex. Most TE silencing factors are conserved and expressed in cichlids. We describe an expansion of two truncated Piwil1 genes in Lake Malawi/Nyasa cichlids, encoding a Piwi domain with catalytic potential. To further dissect epigenetic silencing of TEs, we focused on small RNA-driven epigenetic silencing. We detect a small RNA population in gonads consistent with an active Piwi-interacting RNA (piRNA) pathway targeting TEs. We uncover fluid genomic origins of piRNAs in closely related cichlid species. This, along with signatures of positive selection in piRNA pathway factors, points towards fast co-evolution of TEs and the piRNA pathway. Our study is the first step to understand the contribution of ongoing TE-host arms races to the cichlid radiations in Africa.
Project description:Whole-genome methylomes and total transcriptomes for muscle and liver tissues of Lake Malawi cichlid species characterised in the context of phenotypic diversification.
2021-08-19 | GSE158514 | GEO
Project description:Genomic Characterization of a B Chromosome in Lake Malawi Cichlid Fishes
| PRJNA552724 | ENA
Project description:Lake Malawi haplochromine cichlid RAD
Project description:We compare fore- and mid-brain transcriptomes of reproductive males in monogamous and non-monogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates.
Project description:Most behaviors are associated with heritable genetic variation. Genetic mapping has revealed genomic regions or, in a few cases, specific genes explaining part of this variation. However, understanding how genetic divergence shapes behavioral evolution remains unclear. Here we analyze the evolution of an innate extended phenotype: bower building among male cichlid fish of Lake Malawi, which build bowers of two types, pits and castles. F1 hybrids of pit-digging and castle-building species perform sequential construction of first pit and then castle bowers. Analysis of brain gene expression in these hybrids showed that genes near behavior-associated variants display behavior-dependent allele-specific expression with preferential expression of the pit-species allele during pit digging, and of the castle-species allele during castle building. These genes are highly enriched for functions and pathways involved in neurodevelopment and neural plasticity. Our results suggest that natural behaviors can be associated with complex genetic architectures that alter behavior via cis-regulatory differences whose effects on gene expression are specific to the behavior itself.