Project description:CLINICAL QUESTION:Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD)? RESULTS:We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches. IMPLEMENTATION:strategy of administration, safety of intravitreal injection.
Project description:PurposeDemographic, environmental, and genetic risk factors for age-related macular degeneration (AMD) have been identified; however, a substantial portion of the variance in AMD disease risk and heritability remains unexplained. To identify AMD risk variants and generate hypotheses for future studies, we performed whole exome sequencing for 75 individuals whose phenotype was not well predicted by their genotype at known risk loci. We hypothesized that these phenotypically extreme individuals were more likely to carry rare risk or protective variants with large effect sizes.MethodsA genetic risk score was calculated in a case-control set of 864 individuals (467 AMD cases, 397 controls) based on 19 common (≥1% minor allele frequency, MAF) single nucleotide variants previously associated with the risk of advanced AMD in a large meta-analysis of advanced cases and controls. We then selected for sequencing 39 cases with bilateral choroidal neovascularization with the lowest genetic risk scores to detect risk variants and 36 unaffected controls with the highest genetic risk score to detect protective variants. After minimizing the influence of 19 common genetic risk loci on case-control status, we targeted single variants of large effect and the aggregate effect of weaker variants within genes and pathways. Single variant tests were conducted on all variants, while gene-based and pathway analyses were conducted on three subsets of data: 1) rare (≤1% MAF in the European population) stop, splice, or damaging missense variants, 2) all rare variants, and 3) all variants. All analyses controlled for the effects of age and sex.ResultsNo variant, gene, or pathway outside regions known to be associated with risk for advanced AMD reached genome-wide significance. However, we identified several variants with substantial differences in allele frequency between cases and controls with strong additive effects on affection status after controlling for age and sex. Protective effects trending toward significance were detected at two loci identified in single-variant analyses: an intronic variant in FBLN7 (the gene encoding fibulin 7) and at three variants near pyridoxal (pyridoxine, vitamin B6) kinase (PDXK). Aggregate rare-variant analyses suggested evidence for association at ASRGL1, a gene previously linked to photoreceptor cell death, and at BSDC1. In known AMD loci we also identified 29 novel or rare damaging missense or stop/splice variants in our sample of cases and controls.ConclusionsIdentified variants and genes may highlight regions important in the pathogenesis of AMD and are key targets for replication.
Project description:This SuperSeries is composed of the following subset Series: GSE28002: Gene expression of the whole mouse eye GSE28032: Epigenetic Regulation of IL17RC in Age-related Macular Degeneration (MeDIP-chip) Refer to individual Series
Project description:To identify disease-specific transcriptional programs in retinal pigment epithelium (RPE) cells, fibroblasts from 43 patients with geographic atrophy (GA) were reprogrammed into induced pluripotent stem cells (iPSCs) before being differentiated into RPE and compared to those from 36 healthy individuals. 127,659 RPE cells were profiled via single cell RNA-sequencing (scRNA-seq) and cell classification identified 7 cellular states related to RPE maturation.
Project description:Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution.
Project description:Age-related macular degeneration (AMD), the most common form of irreversible blindness in the industrially developed world, can present years before a patient begins to lose vision. For most of these patients, AMD never progresses past its early stages to the advanced forms that are principally responsible for the vast majority of vision loss. Advanced AMD can manifest as either an advanced avascular form known as geographic atrophy (GA) marked by regional retinal pigment epithelium (RPE) cell death or as an advanced form known as neovascular AMD marked by the intrusion of fragile new blood vessels into the normally avascular retina. Physicians have several therapeutic interventions available to combat neovascular AMD, but GA has no approved effective therapies as of yet. In this chapter, we will discuss the current strategies for limiting dry AMD in patients. We will also discuss previous attempts at pharmacological intervention that were tested in a clinical setting and consider reasons why these putative therapeutics did not perform successfully in large-scale trials. Despite the number of unsuccessful past trials, new pharmacological interventions may succeed. These future therapies may aid millions of AMD patients worldwide.
Project description:We profiled using single cell RNA sequencing the peripheral blood mononuclear cells from control patients and patients with age-related macular degeneration (AMD).
Project description:Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)-related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis.
Project description:The aim of this work is to review the lenses, assessing their advantages and disadvantages. We describe a total of seven types of intraocular lenses (IOLs) recommended for age-related macular degeneration (AMD).We used the PubMed web platform to search for implantable devices in various stages of AMD. We searched for both prospective and retrospective studies and also case reports.Clinical results in AMD patients have been described for a total of seven types of IOLs recommended for AMD: an implantable miniature telescope (IMT), IOL-VIP System, Lipshitz macular implant (LMI), sulcus-implanted Lipshitz macular implant, LMI-SI, Fresnel Prism Intraocular Lens, iolAMD and Scharioth Macula Lens.We conclude that to objectively ascertain the effectiveness and safety of these lenses, further independent clinical studies with longer follow-up data are necessary prior to the general use of these optical devices.