Project description:Natural medicines are often an attractive option for patients diagnosed with chronic conditions. Three main classes of bioactives that have been reported from marine mussel extracts include proteins, lipids and carbohydrates. Commercially, the most relevant species of marine mollusks belong to two genera, Perna and Mytilus. Specifically, the Perna canaliculus species has been repeatedly demonstrated to harbor anti-inflammatory compounds such as omega-3 polyunsaturated fatty acids (ω-3 PUFAs) that can ameliorate pro-inflammatory conditions, or proteins that can promote thrombin inhibitory activity. Recent clinical studies have posited that extracts from green-lipped mussels may lead to prebiotic activity in the intestinal microbiome that in turn has been reported to improve symptoms of osteoarthritis of the knee. Prebiotics have been reported to favorably interact with the intestinal microbiome through the proliferation of beneficial bacteria in the gut, suppressing exogenous and endogenous intestinal infections and promoting homeostasis by balancing local pro- and anti-inflammatory actions. Bioactive compounds from Perna canaliculus are functional foods and, in this regard, may positively interact with the intestinal microbiome and provide novel therapeutic solutions for intra-intestinal and extra-intestinal inflammatory conditions.
Project description:Understanding natural defence mechanisms against parasites can be a valuable tool for the development of innovative therapies. In this study, we investigated the interplay between the gill mucus metabolome and microbiome of Chaetodon lunulatus, a butterflyfish known to avoid gill monogeneans whilst living amongst closely related parasitized species. In an attempt to identify metabolites and OTUs potentially involved in parasite defence mechanisms, we studied the metabolome (LC-MS/MS) and microbiome of several sympatric butterflyfish species, including the only non-parasitized species C. lunulatus. After observing significant differences between the metabolome and microbiome of parasitized versus non-parasitized fish (PCoA, ANOSIM), we obtained the discriminant metabolites and OTUs using a supervised analysis. Some of the most important discriminant metabolites were identified as peptides, and three new β-subunit haemoblogin-derived peptides from C. lunulatus (CLHbβ-1, CLHbβ-2 and CLHbβ-3) were purified, characterised and synthesised. We also identified specific bacterial families and OTUs typical from low-oxygen habitats in C. lunulatus gill mucus. By using a correlation network between the two datasets, we found a Fusobacteriaceae strain exclusively present in C. lunulatus highly correlated to the peptides. Finally, we discuss the possible involvement of these peptides and Fusobacteriaceae in monogenean avoidance by this fish species.