Project description:We characterized a rice (Oryza sativa L ssp. indica cultivar 3037) semi-dwarf mutant sd37, in which CYP96B4 gene (Cytochrome P450 96B subfamily) was identified as the target gene by map-based cloning and complementation test. A point mutation in CYP96B4 leads to a substitution of Thr to Lys in the SRS2 region. The sd37 leaves, panicles and seeds are all smaller compared with those of wild-type, and histological analysis showed that the decreased cell number was the main reason for the dwarf phenotype. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up- and down- regulated genes during this process.
Project description:Long non-coding RNAs (lncRNAs) are essential regulators of a broad range of biological processes in plants. Spectacular progress in next-generation sequencing technologies has enabled genome-wide identification of lncRNAs in multiple plant species. In this study, genome-wide lncRNA sequencing technology was used to identify cold-responsive lncRNAs at the booting stage in rice by comparison of a tolerant variety, Kongyu131 (KY131), and a sensitive variety, Dongnong422 (DN422). GO and KEGG enrichment analysis were performed, focusing on the cis- and trans- target genes of differential lncRNAs. To identify cold-responsive genes, a meta-analysis was used to integrate cold-tolerant QTLs at the booting stage. In total, 13 cold-responsive target genes were obtained by KEGG enrichment analysis combined with meta-analysis, as confirmed by qRT-PCR. Finally, three of these genes were identified in response to cold stress. These results sought to provide new insight into cold-resistance research for rice.
Project description:Here, we present OryzaPG-DB, a rice proteome database based on shotgun proteogenomics, which incorporates the genomic features of experimental shotgun proteomics data. This version of the database was created from the results of 27 nanoLC-MS/MS runs on a hybrid ion trap-orbitrap mass spectrometer, which offers high accuracy for analyzing tryptic digests from undifferentiated cultured rice cells. Peptides were identified by searching the product ion spectra against the protein, cDNA, transcript and genome databases from Michigan State University, and were mapped to the rice genome. Approximately 3200 genes were covered by these peptides and 40 of them contained novel genomic features. Users can search, download or navigate the database per chromosome, gene, protein, cDNA or transcript and download the updated annotations in standard GFF3 format, with visualization in PNG format. In addition, the database scheme of OryzaPG was designed to be generic and can be reused to host similar proteogenomic information for other species. OryzaPG is the first proteogenomics-based database of the rice proteome, providing peptide-based expression profiles, together with the corresponding genomic origin, including the annotation of novelty for each peptide.
Project description:The resveratrol-producing rice (Oryza sativa L.) inbred line, Iksan 526 (I.526), developed by the expression of the groundnut (Arachis hypogaea) resveratrol synthase 3 (AhRS3) gene in the japonica rice cultivar Dongjin, accumulated both resveratrol and its glucoside, piceid, in leaves and seeds. Especially, ultra-performance liquid chromatography (UPLC) analysis revealed that the biosynthesis of piceid reached peak levels at 20 days after heading (DAH) seeds. To investigate endogenous piceid biosynthesis genes (UGTs), total RNA samples of 20 DAH seeds was used for RNA-seq.
Project description:We characterized a rice (Oryza sativa L ssp. indica cultivar 3037) semi-dwarf mutant sd37, in which CYP96B4 gene (Cytochrome P450 96B subfamily) was identified as the target gene by map-based cloning and complementation test. A point mutation in CYP96B4 leads to a substitution of Thr to Lys in the SRS2 region. The sd37 leaves, panicles and seeds are all smaller compared with those of wild-type, and histological analysis showed that the decreased cell number was the main reason for the dwarf phenotype. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up- and down- regulated genes during this process. Two-week old seedlings of sd37 and wild-type rice plants were selected and three biological replicates were generated and evaluated.
Project description:Transcriptional profiling of MIT knockdown plants. MIT is a mitochondrial Fe transporter essential for rice growth and development. The goal was to determine the effects of MIT on global rice gene expression.
Project description:Cellularization is a key event during the development of the endosperm. Our understanding of the developmental regulation of cellularization has been limited for plants other than Arabidopsis. We found that the activation of OsbZIP76 coincided with the initiation of cellularization of rice. Either knockdown or knockout of OsbZIP76 led to precocious cellularization. Many genes involved in endosperm development or starch biosynthesis were prematurely activated in the caryopsis at two days after fertilization. The results implied that OsbZIP76 is involved in the regulation of cellularization in rice. As a putative transcription factor, OsbZIP76 alone lacked transcriptional activation activity. However, it was able to interact with OsNF-YB9 and OsNF-YB1, two nuclear factor Y (NF-Y) family transcription factors, both in yeast and in planta. OsbZIP76 and OsNF-YB9 showed similar endosperm-preferential expression patterns and the transiently expressed proteins were colocalized in the epidermal cells of tobacco. As with osnf-yb1 mutants, the osbzip76 mutants showed reduced seed size and reduced apparent amylose content of the seeds. We also confirmed that OsbZIP76 is an imprinted gene in rice, the expression of which depended on the genetic background. Our results suggested that OsbZIP76 is an endosperm-expressed imprinted gene to regulate development of the endosperm in rice.
Project description:Fairy rings are zones of stimulated grass growth by the interaction between the fungi and the plant. In the previous research, we reported the identification of the “fairy”, 2-azahypoxanthine (AHX), produced by the fairy ring-forming fungus and the mechanism of its growth-promoting activity using DNA microarray. We discovered AOH, a common metabolite of AHX in plants. We investigate expression profiling of rice seedlings treated with AHX or AOH for the mechanism of their growth-promoting activity.