Project description:This paired RIP experiment was done using Drosophila ovaries and designed to identified specific ncRNAs associated with Lsd1 (Lysine specific demethylase 1) complex in vivo.
Project description:These paired RIP experiments were designed to determine specific ncRNAs that associated with either Lsd1 (Lysine specific demethylase 1) complex or Bre1.
Project description:Transcription factors and chromatin modifiers play important roles in programming and reprogramming of cellular states during development. Much is known about the role of these regulators in gene activation, but relatively little is known about the critical process of enhancer silencing during differentiation. Here we show that the H3K4/K9 histone demethylase LSD1 plays an essential role in decommissioning enhancers during differentiation of embryonic stem cells (ESCs). LSD1 occupies enhancers of active genes critical for control of ESC state. However, LSD1 is not essential for maintenance of ESC identity. Instead, ESCs lacking LSD1 activity fail to fully differentiate and ESC-specific enhancers fail to undergo the histone demethylation events associated with differentiation. At enhancers, LSD1 is a component of the NuRD complex, which contains additional subunits that are necessary for ESC differentiation. We propose that the LSD1-NuRD complex decommissions enhancers of the pluripotency program upon differentiation, which is essential for complete shutdown of the ESC gene expression program and the transition to new cell states. This is the ChIP-seq part of the study.
Project description:With an experimental RNomics, we identified 194 novel ncRNAs in silkworm through four developmental stages (egg, larva, pupa and adult). Oligos of 132 ncRNAs were sucessfully designed, the expression of these ncRNAs were analyzed by dual-channel microarray, results showed that 36 ncRNAs had significantly differential expression during development.
Project description:LSD1 (also known as KDM1A) is a histone demethylase and a key regulator of gene expression in embryonic stem cells and cancer.1,2 LSD1 was initially identified as a transcriptional repressor via its demethylation of active histone H3 marks (di-methyl lysine 4 [2MK4]).1 In prostate cancer, specifically, LSD1 also co-localizes with the AR and demethylates repressive 2MK9 histone marks from androgen-responsive AR target genes, facilitating androgen-mediated induction of AR-regulated gene expression and androgen-induced proliferation in androgen-dependent cancers. We report here that the LSD1 protein is universally upregulated in human CRPC and promotes survival of CRPC cell lines. This effect is explained in part by LSD1-induced activation of cell cycle and embryonic stem cell gene setsâgene sets enriched in transcriptomal studies of lethal human tumors. Importantly, despite the fact that many of these genes are direct LSD1 targets, we did not observe histone methylation changes at the LSD1-bound regions, demonstrating non-canonical histone demethylation-independent mechanisms of gene regulation. This ChIP-seq dataset included H3K4me2 and H3K9me2 ChIP-seq data for siRNA target against LSD1 and non-targeting control, as well as SP2509 inhibition of LSD1 and mock treatment 4 conditions: siRNA against LSD1, siRNA against luciferase (non-targeting control); SP2509 inhibition of LSD1, mock treatment. There are 2 replicates per condition.
Project description:Here we describe that lysine-specific demethylase 1 (Lsd1/KDM1a), which demethylates histone H3 on LysM-bM-^@M-^I4 or LysM-bM-^@M-^I9 (H3K4/K9), is an indispensible epigenetic governor of hematopoietic differentiation. Integrative genomic analysis in primary hematopoietic cells, combining global occupancy of Lsd1, genome-wide analysis of its histone substrates H3K4 mono- and di-methylation and gene expression profiling, reveals that Lsd1 represses hematopoietic stem and progenitor cell (HSPC) gene expression programs during hematopoietic differentiation. We found that Lsd1 function was not restricted to transcription start sites, but is also critical at enhancers. Loss of Lsd1 at these sites was associated with increased H3K4me1 and H3K4me2 methylation levels on HSPC genes and their derepression. Failure to fully silence HSPC genes compromised differentiation of hematopoietic stem cells and mature blood cell lineages. Our data indicate that Lsd1-mediated concurrent repression of enhancer and promoter activity of stem and progenitor cell genes is a pivotal epigenetic mechanism required for proper hematopoietic maturation. To identify direct target genes of Lsd1 in myeloid cells we mapped global occupancy of Lsd1 in 32D granuolocytic progenitor cells and compared H3K4me1/me2/me3 and H3K27ac histone modifications in Lsd1fl/fl (wild type) vs. Lsd1fl/f Mx1Cre (knockout) Gr1dim Mac1 granuolocytic progenitor cells.
Project description:Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue. Lsd1 protein complexes were purified from mouse adipose tissue and analyzed by label-free LC-MS/MS. Mice were kept under different conditions prior complex isolation.
Project description:We report the identification of LSD1 binding genomic regions in mouse embryonic stem cells (ESC) by high throughput sequencing. By obtaining over 10 million 36 bp reads of sequence from each chromatin immunoprecipitated DNA, we generated genome-wide maps for LSD1 and histone H3 dimethylated on lysine 4 (H3K4me2), the substrate for LSD1 in mouse ESCs. Our results showed an extensive overlap between the LSD1 and H3K4me2 genomic regions and a correlation between the genomic levels of LSD1/H3K4me2 and gene expression, including many highly expressed ESC genes. LSD1 is recruited to the chromatin of cells in the G1/S/G2 phases and is displaced from the chromatin of M phase cells, suggesting that LSD1 or H3K4me2 alternatively occupies LSD1 genomic regions during cell cycle progression. LSD1 knockdown by RNA interference or its displacement from the chromatin by anti-neoplastic agents caused an increase in the levels of a subset of LSD1 target genes. Taken together, these results suggest that cell-cycle dependent association and dissociation of LSD1 with chromatin mediates short-time scale gene expression changes during ES cell cycle progression. Examination of LSD1 and lysine 4 dimethylated histone H3 (H3K4me2) binding genomic regions in embryonic stem cells. Input genomic DNA and DNA immunoprecipitaed with control IgG was included as controls.
Project description:We characterized the changes in histone modifications as well as the localization of LSD1 and GFI1B for both wt SET-2 and drug-resistant SET-2 LSD1 (Leu659_Asn660insArg) treated with GSK-LSD1