Project description:SNP array was combined with next generation sequencing (NGS) to identify a unique de novo germline mutation in CTCF that became homozygous in the tumor. SNP array shows an LOH through chr16q where CTCF is located.
Project description:SNP arrays was combined with next generation sequencing (NGS) to identify an LOH in 16q together with an unreported CTCF missense variant in its zinc finger domain. CTCF is within 16q LOH. We found that germline heterozygous variant I446K became homozygous in the tumor due to a loss of heterozygosity rearrangement affecting the whole q arm on chromosome 16. Based on CTCF role in regulating the epigenetic architechture of the genome, our findings reveal CTCF variant I446K as a link between MRD21 and Wilms tumor predisposition.
Project description:Wilms tumor (WT) has been a model to study kidney embryogenesis and tumorigenesis and, although associated with hereditary, cancer predisposition syndromes, the majority of tumors occur sporadically. To analyze genetic changes in WT we have defined copy number changes and loss of heterozygosity in 56 Wilms tumors using high resolution oligonucleotide arrays at a average resolution of ~12 Kb. Consistent deletions were seen on chromosomes 1p, 4q, 7p, 9q, 11p, 11q, 14q, 16q, and 21q. High frequency gains were seen for 1q and lower frequency gains were seen on 7q and chromosomes 8, 12 and 18. The high resolution provided by the SNP mapping arrays has defined minimal regions of deletion for many of these LOH events. Analysis of CNAs by tumor stage show relatively stable karyotypes in stage 1 tumors and more complex aCGH profiles in tumors from stages 3-5.
Project description:Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome caused by a variety of molecular changes on chromosome 11p15.5. Children with BWS have a significant risk of developing Wilms tumours with the degree of risk being dependent on the underlying molecular mechanism. In particular, only a relatively small number of children with loss of methylation at the centromeric imprinting centre (IC2) were reported to have developed Wilms tumour. Discontinuation of tumour surveillance for children with BWS and loss of methylation at IC2 has been proposed in several recent publications. We report here three children with BWS reported to have loss of methylation at IC2 on clinical testing who developed Wilms tumour or precursor lesions. Using multiple molecular approaches and multiple tissues, we reclassified one of these cases to paternal uniparental disomy for chromosome 11p15.5. These cases highlight the current challenges in definitively assigning tumour risk based on molecular classification in BWS. The confirmed cases of loss of methylation at IC2 also suggest that the risk of Wilms tumour in this population is not low as previously thought. Therefore, we recommend that for now, all children with a clinical diagnosis of BWS be screened for Wilms tumour by abdominal ultrasonography until the age of 8 regardless of the molecular classification.
Project description:An increasing number of genes involved in chromatin structure and epigenetic regulation has been implicated in a variety of developmental disorders, often including intellectual disability. By trio exome sequencing and subsequent mutational screening we now identified two de novo frameshift mutations and one de novo missense mutation in the CTCF gene in individuals with intellectual disability, microcephaly and growth retardation. Furthermore, a patient with a larger deletion including CTCF was identified. CTCF (CCCTC-binding factor) is one of the most important chromatin organizers in vertebrates and is involved in various chromatin regulation processes such as higher order of chromatin organization, enhancer function, and maintenance of three-dimensional chromatin structure. Transcriptome analyses in all three patients with point mutations revealed deregulation of genes involved in signal transduction and emphasized the role of CTCF in enhancer-driven expression of genes. Our findings indicate that haploinsufficiency of CTCF affects genomic interaction of enhancers and their regulated gene promoters that drive developmental processes and cognition. Comparison of lymphocyte gene expression between 3 de novo CTCF mutation patients and 8 controls (4 technical replicates each, no biological replicates).
Project description:An increasing number of genes involved in chromatin structure and epigenetic regulation has been implicated in a variety of developmental disorders, often including intellectual disability. By trio exome sequencing and subsequent mutational screening we now identified two de novo frameshift mutations and one de novo missense mutation in the CTCF gene in individuals with intellectual disability, microcephaly and growth retardation. Furthermore, a patient with a larger deletion including CTCF was identified. CTCF (CCCTC-binding factor) is one of the most important chromatin organizers in vertebrates and is involved in various chromatin regulation processes such as higher order of chromatin organization, enhancer function, and maintenance of three-dimensional chromatin structure. Transcriptome analyses in all three patients with point mutations revealed deregulation of genes involved in signal transduction and emphasized the role of CTCF in enhancer-driven expression of genes. Our findings indicate that haploinsufficiency of CTCF affects genomic interaction of enhancers and their regulated gene promoters that drive developmental processes and cognition. ChIP-seq analysis of CTCF genomic binding sites in lymphocytes of a control individual (no replicates).
Project description:This SuperSeries is composed of the following subset Series: GSE17342: The role of miRNA in Wilms' tumorigenesis GSE28397: Copy number alteration in Wilms' tumor with custom-designed miRNA probes GSE28400: MIR-204 target gene Refer to individual Series