Project description:As miR-885-5p is a microRNA downregulated in Cutaneous Lupus Erythematosus (CLE) and it is localted in the epidemis and its function is focused in keratinocytes, human Arrays to study the role of miR-885-5p in Cutaneous Lupus Erythematosius will be conducted.Gene expression in keratinocytes transfected with anti-miR-885-5p will be studied. We have included 24 Samples: Non-stimulated control (4), Non-stimulated anti-miR-885-5p (4), UVB-stimulated control (4), UVB-stimulated antimiR-885-5p (4), IFN alpha-stimulated control (4) and IFN alpha-stimulated anti-miR-885-5p
Project description:Next to genetic alterations, it is being recognized that the cellular environment also acts as a major determinant in onset and progression of disease. In cases where different cell types contribute to the final disease outcome, this imposes environmental challenges as different cell types likely differ in their extracellular dependencies. A number of skin diseases, including psoriasis is characterized by a combination of keratinocyte hyperproliferation and immune cell activation. Activation of immune cells involves increased glucose consumption thereby intrinsicly limiting glucose availability for other cell types. Thus, these type of skin diseases require metabolic adaptations that enable coexistence between hyperproliferative keratinocytes and activated immune cells in a nutrient-limited environment. Hsa-microRNA-31-5p (miR-31) is highly expressed in keratinocytes within the psoriatic skin. Here we show that miR-31 expression in keratinocytes is induced by limited glucose availability and enables increased survival of keratinocytes under limiting glucose conditions, by increasing glutamine metabolism. In addition, miR-31 induced glutamine metabolism results in secretion of specific metabolites (aspartate and glutamate) but also secretion of immuno-modulatory factors. We show that this miR-31-induced secretory phenotype is sufficient to induce Th17 cell differentiation, a hallmark of psoriasis. Inhibition of glutaminase (GLS) using CB-839 impedes miR31-induced metabolic rewiring and secretion of immuno-modulatory factors. Concordantly, pharmacological targeting of GLS alleviated psoriasis pathology in a mouse model of psoriasis. Together our data illustrate an emerging concept of metabolic interaction across cell compartments that characterizes disease development, which can be employed to design effective treatment options for disease, as shown here for psoriasis.
Project description:Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality, necessitating innovative therapeutic approaches. This study demonstrates that the compound CC-885 exerts potent anti-tumor effects in HCC both in vitro and in vivo. CC-885 significantly inhibited proliferation, migration, and invasion of HCC cells. In vivo, CC-885 markedly reduced tumor growth and angiogenesis in chick embryo and mouse xenograft models. Mechanistically, CC-885 selectively reduced GOLM1 protein levels via ubiquitin-mediated proteasomal degradation, without affecting its mRNA levels. GOLM1 knockdown mimicked the anti-proliferative effects of CC-885, while overexpression of GOLM1 conferred resistance to CC-885-induced apoptosis and growth inhibition. CC-885 facilitated the interaction between GOLM1 and the E3 ubiquitin ligase CRBN, promoting GOLM1 ubiquitination and degradation. Transcriptomic analyses revealed that CC-885 and GOLM1 knockdown modulated key pathways involved in apoptosis, NF-κB signaling, and cell proliferation. These findings highlight CC-885 as a promising therapeutic agent for HCC, primarily by facilitating the CRBN-dependent degradation of GOLM1, underscoring its potential for clinical application.
Project description:Graves ophthalmopathy (GO), a manifestation of Graves' disease, is an organ-specific autoimmune disease. Intravenous glucocorticoid therapy (ivGCs) is the first-line treatment for moderate-to-severe and active GO. However, ivGCs is only effective in 70-80% of GO patients. Insensitive patients who choose 12 weeks ivGCs were not only delayed in treatment, but also took the risk of adverse reactions of glucocorticoids. At present, there is still a lack of effective indicators to predict the therapeutic effect of ivGCs. Therefore, the purpose of this study is to find biomarkers that can determine the sensitivity of ivGCs before the formulation of treatment, and to clarify the mechanism of its regulation of ivGCs sensitivity. This study first characterized the miRNA profiles of plasma exosomes by miRNA sequencing to identify miRNAs differentially expressed between GO patients with significant improvement (SI) and non-significant improvement (NSI) after ivGCs treatment. According to the function of the target genes, we screened 10 differentially expressed miRNAs. Results showed that compared with NSI patients, mir-885-3p was up-regulated and mir-4474-3p and mir-615-3p were down regulated in the exosomes of SI patients. Based on statistical difference and miRNA function, mir-885-3p was selected for follow-up study. In vitro functional analysis of exosomes mir-885-3p showed that exosomes from SI patients (SI-exo) could transfer mir-885-3p to orbital fibroblasts (OFs), up-regulate the GRE luciferase reporter gene plasmid activity and the level of glucocorticoid receptor (GR), down-regulate the level of inflammatory factors, and improve the glucocorticoid sensitivity of OFs. In addition, we found that high levels of mir-885-3p could inhibit AKT/NFκB signaling pathway, up‐regulate the GRE plasmid activity and GR level, and down‐regulate the level of inflammatory factors of OFs. Moreover, the improvement of glucocorticoid sensitivity by mir-885-3p transmitted by SI-exo can also be inhibited by AKT/NFκB agonist. Finally, through the in vivo experiment of GO mouse model, we further determined the relationship between exosomes mir‐885‐3p sequence, AKT/NFκB signaling pathway, and glucocorticoid sensitivity. As a conclusion, plasma exosomes deliver mir‐885‐3p and inhibit AKT/NFκB signaling pathway to improve the glucocorticoid sensitivity of OFs. Exosomes mir-885-3p can be used as a biomarker to determine the sensitivity of ivGCs in GO patients.
Project description:This is a prospective-retrospective study to determine if the expression of the miRNA’s miR-31-3p and miR-31-5p are prognostic of patient outcomes or predictive of the benefit from anti-EGFR therapy in stage III Colon Cancer. The present study will utilize FFPE tumor samples collected from patients enrolled in the PETACC-8 study conducted by the Fédération Francophone de Cancérologie Digestive (FFCD). This phase 3 clinical trial prospectively randomized fully resected stage III colon cancer patients to receive adjuvant treatment with either FOLFOX-4 plus cetuximab or FLOFOX-4 alone.
Project description:Transcriptional profiling of U937 miR-194-5p (UmiR-194-5p) vs U937 miR-194-5p (UmiR-194-5p) treated with MS275 (SNDX 275;Entinostat) for 24 h at 5uM concetration
Project description:Transcriptional profiling of U937 miR-194-5p (UmiR-194-5p) vs U937 miR-194-5p (UmiR-194-5p) treated with SAHA (Vorinostat; suberoylanilide hydroxamic acid) for 24 h at 5uM concetration
Project description:MiRNAs have been shown to alter both protein expression and secretion in different cellular contexts. By combining in vitro, in vivo and in silico techniques, we demonstrated that overexpression of pre-miR-1307 reduced the ability of breast cancer cells to induce endothelial cell sprouting and angiogenesis. However, the molecular mechanism behind this and the effect of the individual mature miRNAs derived from pre-miR-1307 on protein secretion and is largely unknown. Here, we overexpressed miR-1307-3p|0, -3p|1 and 5p|0 in MDA-MB-231 breast cancer cells and assessed the impact of miRNA overexpression on protein secretion by Mass Spectrometry. Unsupervised hierarchical clustering revealed a distinct phenotype induced by overexpression of miR-1307-5p|0 compared to the controls and to the 5’isomiRs derived from the 3p-arm. Together, our results suggest different impacts of miR-1307-3p and miR-1307-5p on protein secretion which is in line with our in vitro observation that miR-1307-5p, but not the isomiRs derived from the 3p-arm reduce endothelial cell sprouting in vitro. Hence these data support the hypothesis that miR-1307-5p is at least partly responsible for impaired vasculature in tumors overexpressing pre-miR-1307.