Project description:We hypothesized that miRNAs in the bone maroow mesenchymal stem cells (BM-MSC)-derived exosomes contributed to the phenotype change of breast cancer cells through exosome transfer. We analyzed the miRNA expression signature in BM-MSC-derived exosomes. We compared the miRNA expression levels in exosomes between BM-MSCs and adult fibroblasts (as a control). In this study, miRNA expression including in bone-marrow mesenchymal cell (BM-MSC)-derived exosomes was examined, and compared with that of exosomes derived from adult fibroblast cells or the BM-MSC cells. In addition, miRNA expression of BM-MSC exosomes was also compared with that of breast cancer cells with or without cancer stem cell marker.
Project description:Bone marrow (BM) niches provide an optimal substrate for multiple myeloma (MM) cell lodgement and growth. Nevertheless, little is known about the putative mechanisms by which the BM microenvironment can lead to initiation or progression of oncogenesis in this disease. We have demonstrated that BM mesenchymal stromal cell-derived exosomes transfer their miRNA and protein content to clonal plasma cells, thus acting as synaptic vesicles responsible for molding the microenvironment surrounding multiple myeloma (MM) cells, leading to MM growth, dissemination and, therefore, disease progression. We used microarray to detail the changes in microRNA expression in MM-BM mesenchymal stromal cell (MSC)-derived exosomes, compared to normal- and monoclonal gammopathy of undetermined significance- BM-MSC-derived exosomes. Exosomes have been isolated from cell culture supernatant of BM-MSCs (MM=7; MGUS=2; Normal=4), and subsequently evaluated at ultrastructural level by using electron microscopy and immunogolf labeling. RNA was extracted; and miRNA profiling has been assessed by using TaqMan human miRNA profiling. Mean miRNA expression value has been used for miRNA RT-qPCR data normalization, as described (Mestdagh et al., 2009).
Project description:We hypothesized that miRNAs in the bone maroow mesenchymal stem cells (BM-MSC)-derived exosomes contributed to the phenotype change of breast cancer cells through exosome transfer. We analyzed the miRNA expression signature in BM-MSC-derived exosomes. We compared the miRNA expression levels in exosomes between BM-MSCs and adult fibroblasts (as a control).
Project description:Transcription profiling of human bone marrow mesenchymal stem cells treated with exosomes isolated from chronic lymphocytic leukemia cell line MEC-1 supernatant. Cells were left untreated or treated with CLL-exosomes for 6h at 37C.
Project description:Bone marrow (BM) niches provide an optimal substrate for multiple myeloma (MM) cell lodgement and growth. Nevertheless, little is known about the putative mechanisms by which the BM microenvironment can lead to initiation or progression of oncogenesis in this disease. We have demonstrated that BM mesenchymal stromal cell-derived exosomes transfer their miRNA and protein content to clonal plasma cells, thus acting as synaptic vesicles responsible for molding the microenvironment surrounding multiple myeloma (MM) cells, leading to MM growth, dissemination and, therefore, disease progression. We used microarray to detail the changes in microRNA expression in MM-BM mesenchymal stromal cell (MSC)-derived exosomes, compared to normal- and monoclonal gammopathy of undetermined significance- BM-MSC-derived exosomes.
Project description:Human mesenchymal stem cell (MSC)-conditioned medium (CM) was previously reported to affect the biology of tumor cells; however, the precise mechanisms remain unclear. Here, we show that MSCs secreted 40- to 100-nm particles, which have the typical characteristics of exosomes, and these MSC-derived exosomes promoted migration of the breast cancer cell line MCF7. To further investigate the effect of MSC-exosomes on MCF7, we analyzed the gene expression profiles of MCF7 treated with or without MSC-exosomes for 24 h. Investigation of whole genome gene expression level changes in breast cancer cell line MCF7 which were treated with or without mesenchymal stem cell-derived exosomes. This study uses total RNA recovered from two samples. One sample is MCF7 treated with PBS for 24 hours and another one is MCF7 treated with mesenchymal stem cell-derived exosomes for 24hours. The ultimate concentration of mesenchymal stem cell-derived exosomes used in this experiment was 400ng/ul.
Project description:Mesenchymal stem cells (MSCs)-derived exosomes (exo) have shown comprehensive application prospects over the years. Despite similar functions, exomes from different origins present heterogeneous characteristics and components; however, there are no relevant proteomic analyses. In this study, we isolated exosomes from MSCs, derived from different tissues, by ultracentrifugation. A total of 1014 proteins were detected using a label-free method and analyzed with bioinformatics tools. The results revealed their shared function in the extracellular matrix receptor. Bone marrow-MSCs-derived exosomes showed superior regeneration ability. Likewise, adipose tissue-MSCs-derived exosomes played a significant role in immune regulation. Whereas, umbilical cord-MSCs-derived exosomes were more prominent in tissue damage repair.
Project description:To identify the key microRNAs (miRNAs) of hMSCs required for fate determination, miRNA profiling was performed with hMSCs from three different sources including adipose-derived stem cells (ADSCs), bone-marrow-derived stem cells (BMSCs), and umbilical cord-derived stem cells (UCSCs) versus fibroblasts, a more differentiated mesenchymal cell types. We compared the expression profiles of two different donors per hMSCs to that of fibroblasts. All hMSCs were used for profiling at passage 3-6.