Project description:New mechanisms-of-action of anthocyanins (ACNs) provided by a red-fleshed apple compared with a white-fleshed apple ACN-poor, and with an ACN-rich extract on the proteome profile of aorta and heart as cardiovascular key tissues were determined. Hypercholesterolemic Wistar rats were separated into the corresponding groups to analyze the proteomic profile of the aorta and heart tissues using nano-liquid chromatography coupled to mass-spectrometry. Red-fleshed apple downregulated CRP, C1QB and CFP related-inflammation. White-fleshed apple reduced C1QB, CFB, CFD, C3, and C9 related to the complement system, reduced MB and CP related to iron metabolism, and increased ME1, PKM, and PC related to energy homeostasis. ACN-rich extract increased FMOD, TAGLN, and CAP1 related to cellular structure and decreased PRKACA, IQGAP1, and HSP90AB1 related to cellular signaling. Red-fleshed apple rich in ACNs suggested an anti-inflammatory effect while white-fleshed apple reduced the complement system protein-related. An apple matrix effect reduced inflammatory proteins regardless their ACN content.
Project description:Canker disease caused by Neoscytalidium dimidiatum is the most serious disease that attacks the pitaya industry. One pathogenic fungus, referred to as ND8, was isolated from the wild-type red-fleshed pitaya (Hylocereus polyrhizus) of Hainan Province. Here, we studied mainly the host responses of red-fleshed pitaya (H. polyrhizus) cultivars against N. dimidiatum using Illumina RNA-Seq technology.
2019-01-17 | GSE119976 | GEO
Project description:Changes during development of red- and white- fleshed apple cultivars
Project description:Gene-to-gene coexpression analysis is a powerful approach to infer function of uncharacterized genes. To perform non-targeted coexpression analysis of tomato genes, we collected a developmental gene expression dataset using various tissues of tomato plant. Expression data are collected from 24 different tissue types including root, hypocotyl, cotyledon, leaf at different stages, and fruit tissues at 4 different ripening stages from 4 different Solanum lycopersicum cultivars. Fruits were separated to the flesh and the peel. These two tissue types indeed showed remarkably different gene expression profiles. We also collected data from 4 different ripening stages (mature green, yellow, orange, and red) to detail the changes during ripening. By using this gene expression dataset, we calculated pair-wise Pearsonâs correlation coefficients, and performed network-based coexpression analysis. The analysis generated a number of coexpression modules, some of which showed an enrichment of genes associated with specific functional categories. This result will be useful in inferring functions of uncharacterized tomato genes, and in prioritizing genes for further experimental analysis. We used Affymetrix GeneChip Tomato genome Arrays to detail the global gene expression change using 24 different tomato tissue types (67 hybridizations). We collected gene expression data from 24 different tomato tissue types using 67 hybridizations. Root, hypocotyl, cotyledon, and leaf were sampled from 3-week-old or 5-weekâold plant of Solanum lycopersicum cultivar Micro-Tom. Fruit tissues were sampled from S. lycopersicum cultivars Micro-Tom, Anthocyanin fruit (Aft, LA1996), Line27859, and Momotaro 8 (Takii, Japan). From Micro-Tom fruit, the peel and the flesh were separately sampled from 4 different ripening stages: mature green (MG, approximately 30 day after anthesis), yellow (Y, approximately 35 days after anthesis), orange (O, approximately 38-40 days after anthesis), and red (R, approximately 45-48 days after anthesis). From fruits of Aft and Line27859, the peel and the flesh were sampled at mature green (MG, approximately 40 days after anthesis) and red (R, approximately 50-55 days after anthesis) stages. From Momotaro 8, the peel and the flesh were sampled at red (R, 50- approximately 50-55 days after anthesis) stages. For each tissue type, 2-4 biological replicates were made in RNA preparation.
Project description:We have performed a transcriptome analysis of genes at three different ripening stages of the pink-white fruits and the ripe stage of the red fruits of Chinese bayberry. This analysis provided a total of 119,701 unigenes, of which 41.43% were annotated in the Nr database. Our results showed that the formation of the pink-white color in Chinese bayberry fruits depended on the anthocyanin metabolic pathway, regulated by MYB1. Downregulated expression of key anthocyanin biosynthetic pathway genes, such as UFGT, F3’H, and ANS at the late stage of fruits development compared with DK3 fruits resulted in the failure to form red fruits. Our findings shed light on the regulatory mechanisms and metabolic processes that control color development in the fruits of Chinese bayberry.
Project description:Transcriptome analysis of anthocyanin biosynthesis in three potato varieties (white-skinned white flesh, red-skinned red flesh and purple-skinned purple flesh) Raw sequence reads