Project description:Microbiota assembly in the infant gut is influenced by time and duration of dietary exposure to breast-milk, infant formula and solid foods. In this randomized controlled intervention study, longitudinal sampling of infant stools (n=998) showed similar development of fecal bacterial communities between formula- and breast-fed infants during the first year of life (N=210). Infant formula supplemented with galacto-oligosaccharides (GOS) was most efficient to sustain high levels of bifidobacteria compared to formula containing B. longum and B. breve or placebo. Metabolite (untargeted) and bacterial profiling (16S rRNA/shallow metagenomics sequencing) revealed 24-hour oscillations and integrated data analysis identified circadian networks. Rhythmicity in bacterial diversity, specific taxa and functional pathways increased with age and was most pronounced following breast-feeding and GOS-supplementation. Circadian rhythms in dominant taxa were discovered ex-vivo in a chemostat model. Hence microbiota rhythmicity develops early in life, likely due to bacterial intrinsic clock mechanism and is affected by diet.
Project description:The current study directly compared the effects of soy formula feeding with those of estradiol or pure genistein in the neonatal piglet, an animal model which most closely resembles the human infant physiologically and in isoflavone metabolism
Project description:Milk and milk products such as infant formula (IF) play a fundamental role in serving the nutritional needs of the developing infant. Extracellular vesicles (EVs) in human (HM) and cow’s milk (CM) contain molecular cargo such as proteins and micro(mi)RNA that serve as functional messengers between cells and may be of importance to infant health. Here, we have developed a pipeline using advanced proteomics and transcriptomics to enable cross-species comparison of milk and IF EVs. EVs from HM, CM and IF were subjected to data-independent acquisition mass spectrometry and RNA-seq. Differentially abundant proteins (143) and miRNAs (514) (false discovery rate < 0.01) were identified in HM and CM EVs, and CM EV proteins and miRNAs were conserved in IF EVs (~20-90%). We foresee this work to be used in large scale studies to determine biologically relevant species-specific differences in milk EVs that could be leveraged to improve IF products.
Project description:Microbiota assembly in the infant gut is influenced by time and duration of dietary exposure to breast-milk, infant formula and solid foods. In this randomized controlled intervention study, longitudinal sampling of infant stools (n=998) showed similar development of fecal bacterial communities between formula- and breast-fed infants during the first year of life (N=210). Infant formula supplemented with galacto-oligosaccharides (GOS) was most efficient to sustain high levels of bifidobacteria compared to formula containing B. longum and B. breve or placebo. Metabolite (untargeted) and bacterial profiling (16S rRNA/shallow metagenomics sequencing) revealed 24-hour oscillations and integrated data analysis identified circadian networks. Rhythmicity in bacterial diversity, specific taxa and functional pathways increased with age and was most pronounced following breast-feeding and GOS-supplementation. Circadian rhythms in dominant taxa were discovered ex-vivo in a chemostat model. Hence microbiota rhythmicity develops early in life, likely due to bacterial intrinsic clock mechanism and is affected by diet.
Project description:The majority of babies in the US are formula-fed instead of breast fed. There are major differences in the composition of formulas and breast milk and yet little is known about metabolic differences in babies as the result of feeding these very different diets and how that might affect development or disease risk in later life. One concern is that soy-based formulas might have adverse health effects in babies as a result of the presence of low levels of estrogenic phytochemicals genistein and daidzein which are normally present in soy beans. In the current study, we used a piglet model to look at this question. Piglets were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food. Blood glucose and lipids were measured. Formula-fed pigs were found to have lower cholesterol than breast fed piglets and in addition had larger stores of iron in their liver.Microarray analysis was carried out to see if changes in liver gene expression could explain these effects of formula feeding. It was found that overall gene expression profiles were influenced by formula feeding compared to breast fed neonates. Gender-independent and unique effects of formula influenced cholesterol and iron metabolism. Further, soy formula feeding in comparison to milk-based formula failed to reveal any estrogenic actions on hepatic gene expression in either male or female pigs. Piglets (female, male) were either fed breast milk from the sow or were fed two different infant formulas (cow's milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food.
Project description:Microbiota assembly in the infant gut is influenced by time and duration of dietary exposure to breast-milk, infant formula and solid foods.
Project description:The majority of babies in the US are formula-fed instead of breast fed. There are major differences in the composition of formulas and breast milk and yet little is known about metabolic differences in babies as the result of feeding these very different diets and how that might affect development or disease risk in later life. One concern is that soy-based formulas might have adverse health effects in babies as a result of the presence of low levels of estrogenic phytochemicals – genistein and daidzein which are normally present in soy beans. In the current study, we used a piglet model to look at this question. Piglets were either fed breast milk from the sow or were fed two different infant formulas (cow’s milk-based or soy-based) from age 2 days to 21 days when pigs are normally weaned onto solid food. Blood glucose and lipids were measured. Formula-fed pigs were found to have lower cholesterol than breast fed piglets and in addition had larger stores of iron in their liver.Microarray analysis was carried out to see if changes in liver gene expression could explain these effects of formula feeding. It was found that overall gene expression profiles were influenced by formula feeding compared to breast fed neonates. Gender-independent and unique effects of formula influenced cholesterol and iron metabolism. Further, soy formula feeding in comparison to milk-based formula failed to reveal any estrogenic actions on hepatic gene expression in either male or female pigs.