Project description:Osteosarcoma (Osteosarcoma) is a type of bone cancer. Eighty percent of this tumor will be metastatic to the lungs or liver, and as a result, patients generally need chemotherapy to improve survival possibility. Recently, anti-tumor activity has been reported in Ocimum gratissimum aqueous extract (OGE), which has been the focus of recent extensive studies on therapeutic strategies due to its antioxidant properties. We used microarrays to identify potential and novel target genes responsive to the anticancer effect in OGE treatment in osteosarcoma cells, We performed pharmacogenomics analyses for the effect of OGE on human osteosarcoma U2-OS and HOS cell growth. Cell viability, Western blot and flow cytometry analysis were performed before performing pharmacogenomics analyses for the effect of OGE on human osteosarcoma U2-OS and HOS cell growth, including cDNA microarray and RT-PCR assays.
Project description:CDK12 and CDK13 promote transcription elongation within the gene body and regulate the processivity of RNAPII. THZ531 inhibits the enzymatic activity of CDK12 and 13 through covalent binding. Gene expression profiling was performed to investigate the THZ531-induced transcription effect, and search the subset of sensitive genes in osteosarcoma cell lines, U2-OS and SJSA-1.
Project description:U-2 OS (human osteosarcoma cell line) were treated with ZM447439 (an aurora kinase inhibitor), SB202190 (a p38 inhibitor) or ZM447439+SB202190 and resulting changes in gene expression were profiled.
Project description:Purpose: Osteosarcoma (OS) is the most common primary bone malignancy. OS consists of several subtypes including fibroblastic, osteoblastic and chondroblastic OS. We have developed genetically engineered mouse models of human OS that recapitulate two distinct subtypes, fibroblastic (Osx-CreLox p53-/- Rb-/-) and osteoblastic (Osx-Cre shRNA p53-/-) OS. The goal of this study was to identify transcriptional differences that distinguish the two subtypes. Methods: mRNA profiles of cell lines derived from tumours from Osx-Cre p53fl/fl Rbfl/fl (fibroblastic OS) and Osx-Cre shRNA TRE-p53.1224 pRbfl/fl (osteoblastic OS) mouse models were generated by RNA sequencing, in triplicate, using Illumina HiSeq2000. The sequence reads that passed quality filters were analyzed at the transcript level with TopHat followed by Cufflinks. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 12,436 transcripts in the tumours of Osx-Cre p53fl/fl Rbfl/fl and 12,074 Osx-Cre shRNA TRE-p53.1224 pRbfl/fl with the TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes. Conclusions: Our study represents a detailed analysis of OS subtype transcriptomes generated by RNA-seq technology. mRNA profiles of cell lines derived from tumours from two genetically engineered mouse models of human osteosarcoma (Osx-Cre p53fl/fl Rbfl/fl and Osx-Cre shRNA TRE-p53.1224 pRbfl/fl) were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.