ABSTRACT: Rhizosphe microbiome dataset of the Robusta coffee (Coffea canephora L.) plant grown in the Central Highlands, Vietnam based on analysis using 16S rRNA metagenomics
Project description:Background: Understanding the genetic elements that contribute to key aspects of coffee biology will impact future agronomical improvements for this economically important tree. The past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results: The project PUCE CAFE, set up by the scientific consortium NESTLE/IRD/CIRAD has developed of long oligonucleotide coffee array using public coffee EST sequences mainly obtained from different stages during fruit development and leaves in Coffea canephora (Robusta). We have performed a validation experiment in order to check the array usability and the reproducibility of hybridizations. Conclusion: We have generated the first 15K Coffee array during this three years project PUCE CAFE, granted by The French National Research Agency (ANR, Programme Génoplante) . This new tool was dedicated to large scale transcriptomic analysis during grain development of Coffea canephora grown in different countries . Furthermore, other analysis have been also initiated by the different partners like analysis of polyploidy or drought resistance. In any case, at the end of the project, the generated arrays will be available to the international scientific community.
Project description:Background: Understanding the genetic elements that contribute to key aspects of coffee biology will impact future agronomical improvements for this economically important tree. The past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results: The project PUCE CAFE, set up by the scientific consortium NESTLE/IRD/CIRAD has developed of long oligonucleotide coffee array using public coffee EST sequences mainly obtained from different stages during fruit development and leaves in Coffea canephora (Robusta). We have performed a validation experiment in order to check the array usability and the reproducibility of hybridizations. Conclusion: We have generated the first 15K Coffee array during this three years project PUCE CAFE, granted by The French National Research Agency (ANR, Programme Génoplante) . This new tool was dedicated to large scale transcriptomic analysis during grain development of Coffea canephora grown in different countries . Furthermore, other analysis have been also initiated by the different partners like analysis of polyploidy or drought resistance. In any case, at the end of the project, the generated arrays will be available to the international scientific community. three biological replicates were made for each tissue analyzed (i.e. leaves, flowers and mature beans). The following comparisons were made: Bean-Flower, Leaf-Flower and Leaf-Bean. In all, we performed microarray analyses on 18 slides [3 (replicates) x 2 (dyes) x 3 (organs)]
Project description:Sequencing the coffee tree genome (Coffea canephora)
| PRJEB4211 | ENA
Project description:Taxonomic and functional profiles of Coffea canephora endophytic microbiome in the Central Highlands region, Vietnam revealed by analysis of 16S rRNA metagenomics sequence data
Project description:SRNAs from field collected Coffea canephora leaves were profiled by Illumina sequencing and 63 unique microRNA genes belonging to 34 families were found.
Project description:Coffee is one of the most important commodities cultivated worldwide and has great economic impact in producing countries. Although 130 different species belonging to the coffea gender have been described, only two of them are commercially exploited: Coffea arabica and Coffea canephora. C. arabica is responsible for 61% of the world production (Van der Vossen et al., 2015). However, due to the narrow genetic back ground, classical genetic breeding is time consuming and takes around 30 years (Santana-Buzzy et al., 2007; Hendre et al., 2014). Several genetic engineering and biotechnological tools have been successfully applied in coffee breeding. Somatic embryogenesis (SE) is a process in which new viable embryos are produced from somatic tissues. It is one of the most promising production processes (Santana-Buzzy et al, 2007; Marsoni et al., 2008). A better understanding of the molecular basis related to somatic embryogenesis will give insight into the process of embryo formation and totipotency and will allow the development of new in vitro culture strategies for the propagation and genetic manipulation of elite cultivars (Marsoni et al., 2008). High throughput proteomics in coffee is limited so far to 2D gel based proteomics techniques. Although really useful and the most common technique for plants, 2DE is limited in throughput and a gel free technique allow to go a step further (Carpentier & America, 2014; Vanhove et al., 2015). To improve the knowledge about somatic embryogenesis, we present the first high throughput proteome profile (1051 confident protein identifications) of coffee embryogenic cell suspensions developed from leaves of Coffea arabica cultivar Catuaí.
2016-02-03 | PXD002963 | Pride
Project description:Root endophytic microbiome dataset of rice (Oryza sativa L.) grown in the Central Highlands of Vietnam
Project description:Background: Polyploidy has long been recognized as an important mechanism in eukaryotes evolution. Recent studies have documented dynamic changes in plant polyploid gene expression, which reflects genomic and functional plasticity of duplicate genes and genomes in plants. Genomewide approaches in a variety of allopolyploids, mostly synthetics, reveal a trend of non-additive gene expression. The aim of the study was to document expression divergence between a relatively recently formed natural allopolyploid (Coffea arabica) and its ancestral parents (Coffea canephora and Coffea eugenioides) and to verify if the divergence was ‘environment-dependent’.Results: Employing a microarray platform designed against 15,522 unigenes, we assayed gene expression levels in allopolyploid and its two parental diploids. For each gene, we determined expression variation levels between the three species grown under two sets of temperature conditions (26-22°C/30-26°C). More than 35% of genes were differentially expressed in each comparison at both temperatures, except for ‘allopolyploid versus Canephora’ at the ‘hottest’ temperature where an unexpected low gene expression divergence (<9%) were observed. Genes were binned in categories: ‘no change’, ‘additivity’, ‘transgressive’ and ‘dominance’ (‘Canephora-like’ and ‘Eugenioides-like’). The totally new phenomenon revealed by our study was a drastic modification of proportions between the allopolyploid and its parents when environmental conditions were modified. At the ‘hottest’ temperature, we found a virtual disappearance of gene categories classed as ‘transgressive’, ‘Eugenioides-like dominance’ or ‘additivity’ and a major increase in genes classed in the ‘Canephora-like dominance’ category. At this set of growing conditions, we therefore found very high bias that suggested a phenomenon of ‘dominance’ of C. canephora transcription profile. The Canephora genome parental expression state seems exhibited in strong preference to the Eugenioides genome parental state. Conclusion: Our data constitute evidence for a transcription profile divergence between allopolyploid and its parental species, massively affected by environmental conditions. The parental origin of the transcription profiles was not consistently biased towards one parental species, but appeared to be affected by environmental conditions. This phenomenon indicates the plasticity of allopolyploids and might ultimately explain better adaptation to environmental conditions.
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360
Project description:Coffee leaf miner is an important plague in coffee crops. Using subtracted cDNA libraries and nylon filter arrays, we analyzed the expression profile of 1536 expressed sequence tags (ESTs) of coffee plants from an hybrid progeny (C. arabica x C. racemosa), containg resistant (R) and susceptible plants (S) to the infestation of coffee leaf miner. Leaf discs were collected from non-infested plants (R control - RC; S control - SC), infested plants after moth oviposition (R oviposition - Ro; S oviposition - So) and infested after larvar eclosion (R eclosion - Re; S eclosion - Se). Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation. Plant Science 169(2):351-360 Keywords: ordered