Project description:The strictly monophagous olive fruit fly, Bactrocera oleae, represents the major pest of olive orchards worldwide. It has the unique ability to hydrolyze olive proteins as well as to overcome olive defenses, especially the high levels of phenolic compounds present in the green olive mesocarp. In this study, we aimed to identify specific genes potentially implicated in overcoming green olive defense and the utilization of the flesh, by examining larval responses to green olives on the transcript level. Focusing on the up-regulated gene set, we identified two putative serine proteases and one putative UDP-glycosyltransferase possibly associated with these traits. Serine proteases could be involved in the digestion of dietary proteins but also could represent a mechanism to overcome the effect of trypsin inhibitors induced by the olive fruit upon attack. UDP-glycosyltransferase may be implicated in the sequestration and/ or direct detoxification of phenolic compounds highly present in green olives.
Project description:Proteins and peptides are minor components of vegetal oils. The presence of these compounds in virgin olive oil was first reported in 2001, but the nature of the olive oil proteome is still a puzzling question for food science researchers. In this project, we have compiled for a first time a comprehensive proteomic dataset of olive fruit and fungal proteins that are present at low but measurable concentrations in a vegetable oil from a crop of great agronomical relevance as olive (Olea europaea L.). Accurate mass nLC-MS data were collected in high definition direct data analysis (HD-DDA) mode using the ion mobility separation step. Protein identification was performed using the Mascot Server v2.2.07 software (Matrix Science) against an ad hoc database made of olive protein entries. Starting from this proteomic record, the impact of these proteins on olive oil stability and quality could be tested. Moreover, the effect of olive oil proteins on human health and their potential use as functional food components could be also evaluated. In addition, this dataset provides a resource for use in further functional comparisons across other vegetable oils, and also expands the proteomic resources to non-model species, thus also allowing further comparative inter-species studies.
Project description:Olive oil is protective against risk factors for cardiovascular and cancer diseases. A nutrigenomic approach was performed to assess whether olive oil, the main fat of the Mediterranean diet modifies the gene expression in human peripheral blood mononuclear cells. Six healthy male volunteers ingested, at fasting state, 50 ml of olive oil, and continued with the same olive oil as a source of raw fat (25ml/day) during 3 weeks. Prior to intervention a 1-week washout period with sunflower oil as the only source of fat was followed. During the 3 days before, and on the intervention day, a very low phenolic compound diet was followed. At baseline (0h), at post ingestion (6h), and at fasting state after 3 weeks of sustained consumption of olive oil total RNA was isolated from PBMC. Gene expression was evaluated by microarray and verified by qRT-PCR. Keywords: Olive oil, gene expression, single dose, sustained consumption
Project description:We aimed to identify miRNA regulated by alternate bearing in O. europaea. For this purpose, six olive (Olea europaea L. )(Ayvalık variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves ("on-year" and "off-year" mature -leaven in November and juvenile - leaven in July plants) and sequenced by high-throughput Illumina sequencing. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in olive tree. In addition, 38 novel miRNA were discovered in the datasets. Expression of olive tree miRNA varied greatly among the six libraries, indicating contribution of diverse miRNA in balancing between reproductive and vegetative phases. The differential expression of miRNA was evaluated on the basis of the developmental phase of the samples.
Project description:The delineation of the olive pollen proteome and its allergogram can improve the clinical management of patients with this pollinosis. We here integrated the recently described wild olive genomic data in a comprehensive proteomic approach to get the annotated olive (Olea europaea) pollen proteome and complete its complex allergogram. Olive pollen proteins were identified by LC-MS/MS using predicted protein sequences from its genome. GO annotation, KEGG Pathway analysis and identification of allergen families were performed by bioinformatics. Recombinant DNA, protein expression and purification, and immunological analyses were used to characterize putative allergens. A total of 1,907 proteins were identified. 60% of the proteins were predicted to possess catalytic activity and be involved in metabolic processes. 203 proteins belonging to 47 allergen families were found, with 37 non-previously described in olive pollen. Of four potential allergens produced in Escherichia coli, a peptidyl-prolyl cis-trans isomerase -cyclophilin-, masked in the protein extract by the major allergen Ole e 1, was found as a new olive pollen allergen (Ole e 15). 63% of the Ole e 15-sensitized patients were children and showed strong IgE recognition of the allergen. Ole e 15 shared high sequence identity with other plant, animal and fungal cyclophilins and a high IgE cross-reactivity with pollen, plant food and animal extracts. Taken together, the combination of available genomic data with proteomics permitted the profiling of the olive pollen proteome, revealing the spectrum of allergen families and cyclophilin as a new relevant allergen implicated in cross-reactivity.
Project description:The delineation of the olive pollen proteome and its allergogram can improve the clinical management of patients with this pollinosis. We here integrated the recently described wild olive genomic data in a comprehensive proteomic approach to get the annotated olive (Olea europaea) pollen proteome and complete its complex allergogram. Olive pollen proteins were identified by LC-MS/MS using predicted protein sequences from its genome. GO annotation, KEGG Pathway analysis and identification of allergen families were performed by bioinformatics. Recombinant DNA, protein expression and purification, and immunological analyses were used to characterize putative allergens. A total of 1,907 proteins were identified. 60% of the proteins were predicted to possess catalytic activity and be involved in metabolic processes. 203 proteins belonging to 47 allergen families were found, with 37 non-previously described in olive pollen. Of four potential allergens produced in Escherichia coli, a peptidyl-prolyl cis-trans isomerase -cyclophilin-, masked in the protein extract by the major allergen Ole e 1, was found as a new olive pollen allergen (Ole e 15). 63% of the Ole e 15-sensitized patients were children and showed strong IgE recognition of the allergen. Ole e 15 shared high sequence identity with other plant, animal and fungal cyclophilins and a high IgE cross-reactivity with pollen, plant food and animal extracts. Taken together, the combination of available genomic data with proteomics permitted the profiling of the olive pollen proteome, revealing the spectrum of allergen families and cyclophilin as a new relevant allergen implicated in cross-reactivity.
Project description:The delineation of the olive pollen proteome and its allergogram can improve the clinical management of patients with this pollinosis. We here integrated the recently described wild olive genomic data in a comprehensive proteomic approach to get the annotated olive (Olea europaea) pollen proteome and complete its complex allergogram. Olive pollen proteins were identified by LC-MS/MS using predicted protein sequences from its genome. GO annotation, KEGG Pathway analysis and identification of allergen families were performed by bioinformatics. Recombinant DNA, protein expression and purification, and immunological analyses were used to characterize putative allergens. A total of 1,907 proteins were identified. 60% of the proteins were predicted to possess catalytic activity and be involved in metabolic processes. 203 proteins belonging to 47 allergen families were found, with 37 non-previously described in olive pollen. Of four potential allergens produced in Escherichia coli, a peptidyl-prolyl cis-trans isomerase -cyclophilin-, masked in the protein extract by the major allergen Ole e 1, was found as a new olive pollen allergen (Ole e 15). 63% of the Ole e 15-sensitized patients were children and showed strong IgE recognition of the allergen. Ole e 15 shared high sequence identity with other plant, animal and fungal cyclophilins and a high IgE cross-reactivity with pollen, plant food and animal extracts. Taken together, the combination of available genomic data with proteomics permitted the profiling of the olive pollen proteome, revealing the spectrum of allergen families and cyclophilin as a new relevant allergen implicated in cross-reactivity.
Project description:Small RNAs of 20 to 25 nucleotides in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the small RNA component of more than 40 plant species. Here, use deep sequencing and molecular methods to report the first inventory of small RNAs in olive (Olea europaea). Small RNAs of 24 nts dominate the small RNA transcriptome and atypically accumulate to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. By contrast, small RNAs of 20 to 22 nts were poorly represented in the population at levels lower than those found in most plant species tested. A total of 14 known miRNA families were identified in two libraries prepared from growing and dormant lateral buds. We found that some known miRNAs showed tissue- and/or developmental-specific expression. Also, seven novel, olive-specific miRNA candidates were found in our sequenced set of which 1 were supported by their star strands. Potential precursors for these miRNA candidates with intramolecular folding capacities were found in the olive EST database. Target mRNAs of conserved miRNAs and new olive-specific miRNA were computationally predicted among the olive EST collection and experimentally validated through endonucleolytic cleavage assays.
Project description:Using the GENIPOL flounder cDNA microarray, we assessed the temporal transcriptomic responses of Platichthys flesus to model toxicants over a 16 day timespan. Immature fish were treated by intraperitoneal injection with cadmium chloride (50 micrograms/kg in saline), 3-methylcholanthrene (25mg/kg in olive oil), Aroclor 1254 (50mg/kg in olive oil), tert-butyl-hydroperoxide (5mg/kg in saline), lindane (25 mg/kg in olive oil), perfluoro-octanoic acid (100mg/kg in olive oil), olive oil or saline (0.9%). Hepatic gene expression changes were determined 1,2,4,8 and 16 days post-injection in comparison with time-matched carrier controls.