Project description:This study was aimed to deal with a comparative proteome analysis of the two chickpea genotypes with contrasting response to drought stress, ICC 4958 (drought-tolerant, DT) and ICC 1882 (drought-sensitive, DS). Proteins were extracted from the root tissues collected from the control and drought stressed plants of both the genotypes. NanoLC-MS/MS analysis of the protein sample was performed using EASY-nLC 1000 system for the separation and identification of peptides/proteins. This study provided a mechanistic insight of drought stress tolerance in chickpea.
2023-07-20 | PXD041434 | Pride
Project description:Comparitive transcriptomics of Chickpea genotypes for salt tolerance
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Keywords: Mechanism of salt tolerance
Project description:In order to understand molecular mechanisms of salt stress tolerance in rice several researches have been reported, however there are still unclear processes involved in salt tolerance. For reaching to a better perspective of the molecular mechanisms, we designed a comprehensive transcriptome study consisting contrasting genotypes, different tissues and different sampling time points. Two contrasting genotypes were selected and grown in Yoshida hydroponic medium for 14 days under controlled conditions. For salinity stress half of the seedlings were under 150 mM NaCl and after 6 and 54 h the treated and untreated samples were harvested in three replications from roots and shoots separately
Project description:Purpose:Identification of genes and miRNAs responsible for salt tolerance in upland cotton (Gossypium hirsutum L.) would help reveal the molecular mechanisms of salt tolerance. We performed physiological experiments and transcriptome sequencing (mRNA-seq and small RNA-seq) of cotton leaves under salt stress using Illumina sequencing technology. And quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods:We investigated two distinct salt stress phases—dehydration (4 h) and ionic stress (osmotic restoration; 24 h)—that were identified by physiological changes of 14-day-old seedlings of two cotton genotypes, one salt tolerant and the other salt sensitive, during a 72-h NaCl exposure. A comparative transcriptomics approach was used to monitor gene and miRNA differential expression at two time points (4 and 24 h) in leaves of the two cotton genotypes under salinity conditions. Results:During a 24-h salt exposure, 819 transcription factor unigenes were differentially expressed in both genotypes, with 129 unigenes specifically expressed in the salt-tolerant genotype. Under salt stress, 108 conserved miRNAs from known families were differentially expressed at two time points in the salt-tolerant genotype. Conclusions:Our comprehensive transcriptome analysis has provided new insights into salt-stress response of upland cotton. The results should contribute to the development of genetically modified cotton with salt tolerance.
Project description:Understanding the molecular differences in plant genotypes contrasting for heat sensitivity can provide useful insights into the mechanisms that confer heat tolerance in plants. This study is focused on comparative physiological and proteomic analyses of heat sensitive (ICC16374) and tolerant (JG14) genotypes of chickpea (Cicer arietinum L.) when subjected to heat stress at anthesis.Comparative gel-free proteome profiles indicated differences in the expression levels and regulation of common proteins that are associated with heat tolerance in contrasting genotypes under heat stress. The differentially regulated proteins were grouped into three categories based on their involvement in the molecular functions, cellular location and biological processes. Besides the identification of heat shock proteins, other proteins such as acetyl-CoA carboxylase, pyrroline-5-carboxylate synthase (P5CS), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), phenylalanine ammonia-lyase (PAL) 2, ATP synthase, glycosyltransferase, sucrose synthase and late embryogenesis abundant (LEA) proteins were strongly associated with heat tolerance in chickpea. Several crucial proteins such as cystathionine gamma-synthase, glucose-1-phosphate adenyltransferas, malate dehydrogenase, threonine synthase, and non-cyanogenic ß-glucosidase were induced by heat only in the heat tolerant genotype. Based on pathway analysis, we propose that proteins which are essentially related to the electron transport chain in photosynthesis, aminoacid biosynthesis, ribosome synthesis and secondary metabolite synthesis may play key roles in inducing tolerance to heat stress.
Project description:Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of draught tolerance. We used microarrays to investigate the global gene expression in response to drought stress.
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Experiment Overall Design: We used Agilent rice gene chips (G4138A) to investigate the transcript level changes in rice plant tissues during salt stress treatment. We used two contrasting rice genotypes (FR13A tolerant and IR24 susceptible) differing in salt stress response. Plants were grown in growth chambers and treated with 150 mM salt concentration at 14th DAS. Sampling was done in both constitutive and treated plants at 3 time points. Two replications of microarray experiments were carried out by hybridizing the RNA from tolerant samples against the susceptible lines on the same slide.
Project description:Salinity stress poses a significant risk to agricultural yield and productivity. Therefore, elucidation of plant salt-response mechanisms has become essential to identify stress-tolerance genes. In the present study, two pearl millet genotypes with contrasting salt-tolerance showed differential morpho-physiological and proteomic responses under 150 mM NaCl, and the genotype IC 325825 could withstand salt-stress better than IP 17224. The salt-tolerance potential of IC 325825 was associated with its ability to maintain ionic, osmotic balance and membrane integrity under stress. The IC 325825 exhibited better growth under salinity as compared to IP 17224 due to higher expression of C4 photosynthesis enzymes, efficient antioxidant system, and lower Na+/K+ ratio. Comparative proteomics analysis revealed greater metabolic perturbation in IP 17224 under salinity, in contrast to IC 325825 that harbored pro-active stress-responsive machinery, allowing its survival and better adaptability under salt-stress. The differentially expressed proteins were in-silico characterized for their functions, subcellular-localization, pathway/ interaction analysis, and relative transcript levels. This study has provided novel insights into salinity stress adaptive mechanisms in pearl millet, demonstrating the power of proteomics-based approaches. The critical proteins identified in the present study could be further explored as potential objects for increasing salt-tolerance in sensitive crop plants.
Project description:Soil salinity is one of the primary causes of yield decline in rice. Pokkali (Pok) is a highly salt-tolerant landrace whereas IR29, is salt-sensitive but a widely cultivated cultivar. Comparative analysis of these genotypes may offer better understandings of the salinity tolerance mechanism. The published reports largely underscored the importance of transcriptional regulation during salt stress in these genotypes, while, the regulation at translational level is also critically important. Therefore, simultaneous comparison of transcriptional and translational changes between IR29 and Pok could unravel molecular insights into gene regulatory mechanisms that differ between these contrasting genotypes. Using RNA-Seq, we analyzed transcriptome and translatome from the control and salt-exposed Pok and IR29 seedlings. Clear differences were evident both at transcriptional and translational levels between the two genotypes even under control condition. In response to salt stress, 57 DEGs were commonly upregulated both at transcriptional and translational levels in the two genotypes; the number of up/down regulated DEGs in IR29 was comparable at transcriptional and translational levels; whereas in Pok, the number of upregulated DEGs at translational level (544 DEGs) was considerably higher than that at transcriptional level (219 DEGs); contrastingly, the number of downregulated DEGs (58) at translational level was significantly smaller than that at transcriptional level (397 DEGs). We speculate that Pok is more capable of stabilizing mRNA as well as can efficiently load mRNAs on to polysomes for translation under salt stress. Functional analysis showed that Pok is more efficient in maintaining cell wall integrity, detoxifying reactive oxygen species (ROS), translocating molecules and maintaining photosynthesis under salt stress. The present study not only confirmed the known salt stress associated genes, but also identified a number of putative new salt-responsive genes. This study also showed the importance of translational regulation in salt stress and other stresses responsive mechanism.