Project description:A three-stage continuous fermentative system was developed to simulate and control physicochemical factors of the gut biology. Inoculation was of each reactor was performed from a human fecal sample which was initially amplified with a batch procedure. Samples from the initial feces, the batch and from the bioreactors media were collected to extract bacterial DNA. 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 5 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either the initial stool, the batch inoculum or fermentative medium different compartments of the simulated colon (Proximal, Transversal and Distal). Each probe (4441) was synthetized in three replicates.
Project description:A three-stage continuous fermentative system was developed to simulate and control physicochemical factors of the gut biology. Inoculation was of each reactor was performed from a human fecal sample which was initially amplified with a batch procedure. Samples from the initial feces, the batch and from the bioreactors media were collected to extract bacterial DNA. 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray.
2013-05-07 | GSE46677 | GEO
Project description:Global study of microbial diversity on volcano rabbit feces
| PRJNA721235 | ENA
Project description:Microbial Diversity Analysis and Metabolome Study of Spicy Feces
Project description:To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. Acid mine drainage (AMD) presents numerous problems to the aquatic life and surrounding ecosystems. However, little is known about the geographic distribution, diversity, composition, structure and function of AMD microbial communities. In this study, we analyzed the geographic distribution of AMD microbial communities from twenty sites using restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, and the results showed that AMD microbial communities were geographically distributed and had high variations among different sites. Then an AMD-specific microarray was used to further analyze nine AMD microbial communities, and showed that those nine AMD microbial communities had high variations measured by the number of detected genes, overlapping genes between samples, unique genes, and diversity indices. Statistical analyses indicated that the concentrations of Fe, S, Ca, Mg, Zn, Cu and pH had strong impacts on both phylogenetic and functional diversity, composition, and structure of AMD microbial communities. This study provides insights into our understanding of the geographic distribution, diversity, composition, structure and functional potential of AMD microbial communities and key environmental factors shaping them. This study investigated the geographic distribution of Acid Mine Drainages microbial communities using a 16S rRNA gene-based RFLP method and the diversity, composition and structure of AMD microbial communities phylogenetically and functionally using an AMD-specific microarray which contained 1,072 probes ( 571 related to 16S rRNA and 501 related to functional genes). The functional genes in the microarray were involved in carbon metabolism (158), nitrogen metabolism (72), sulfur metabolism (39), iron metabolism (68), DNA replication and repair (97), metal-resistance (27), membrane-relate gene (16), transposon (13) and IST sequence (11).
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.