Project description:We present metaproteome data from wheat rhizosphere from saline and non-saline soil. For collection and acquisition of metaproteome from wheat rhizosphere under saline and normal conditions, a survey was conducted in regions of Haryana, India. Samples from 65 days old plants (wheat var HD2967) were collected and pooled and based on EC,saline (NBAIM B; EC 6mS cm-1; pH 9.0; Bhaupur 2, Haryana, INDIA; 29°19'8"N;76°48'53"E) and normal soil samples (NBAIM C; EC 200 uS cm-1; pH 7.2; Near Nainform, Haryana, INDIA; 29°19'8"N;76°48'53"E) were selected for isolation of proteome with the standardized protocol at our laboratory followed by metaproteome analysis with the standardized pipepline. In total 1538 and 891 proteins were obtained from wheat rhizosphere from saline and non-saline respectively with the given parameters and software. Among 1410 proteins unique for saline soil, proteins responsible for glycine, serine and threonine metabolism and arginine and proline biosynthesis were found in saline and absent in non-saline. The present study extends knowledge about the physiology and adaptations of the wheat rhizosphere associated microbiota under saline soil.
Project description:Take-all is a devastating soil-borne disease that affects wheat production. The continuous generation of disease-resistance germplasm is an important aspect of the management of this pathogen. In this study, we characterized the wheat-Psathyrostachys huashania Keng-derived progeny H139 that exhibits significantly improved resistance to wheat take-all disease compared with its susceptible parent 7182. GISH) and mc-FISH analyses revealed that H139 is a stable wheat-P. huashania disomic substitution line lacking wheat chromosome 2D.EST-STS marker and Wheat Axiom 660K Genotyping Array analysis further revealed that H139 was a novel wheat-P. huashania 2Ns/2D substitution line, and that the P. huashania 2Ns chromosome shares high sequence similarity to wheat chromosome 2D. These results indicate that H139, with its enhanced wheat take-all disease resistance and desirable agronomic traits, provides valuable genetic resources for wheat chromosome engineering breeding.
2020-01-07 | GSE143188 | GEO
Project description:Soybean soil bacterial community in soybean-corn rotation and soybean-wheat-corn rotation
Project description:Considering the crucial role of root exudates, we hypothesized that continuous wheat cultivation would lead to lower glucose release, resulting in lower microbial growth, activity, and biomass. For the first time in situ glucose imaging was optimized for studying the interactions in the first (W1) and third (W3) wheat after break crop plots in the field. Glucose imaging method combined with soil microbial respiration, enzyme kinetics and the quantification SWEET genes expression levels in wheat plants. W3 had the lowest proportion of hotspots for glucose release with 1.35 % of the total soil surface area, indicating a 17.7 % decline compared to W1. Also, the expressions of functional orthologous genes of SWEET1a in wheat roots were significantly upregulated in W3 compared to W1. The growing microbial biomass in the rhizosphere soil of W1 was about five times higher than W3. Differences in SWEET gene expression and shift in glucose release is linked to altered root physiology and exudation processes, potentially reflecting the plant's strategy to create a less favourable environment for opportunistic pathogens. Hence, this study provides novel insights into the complex interactions between continuous wheat cultivation, root exudation, microbial dynamics, gene expression, and enzymatic activities.
Project description:It is well-known that individual pea (Pisum sativum L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi. The aim of this work was to characterize the alterations in root proteome of highly responsive pea genotype k-8274 and low-responsive genotype k-3358 grown in non-sterile soil, which were associated with root colonization with rhizobial bacteria and arbuscular mycorrhiza fungi in comparison to proteome shifts caused by soil supplementation with mineral nitrogen salts. Our results clearly indicate that supplementation of the soil with mineral nitrogen-containing salts switched the root proteome of both genotypes to assimilation of the available nitrogen, whereas the processes associated with nitrogen fixation were suppressed. Surprisingly, inoculation with rhizobial bacteria had only a minor effect on root proteomes of the both genotypes. The most pronounced response was observed for highly responsive k-8274 genotype inoculated simultaneously with rhizobial bacteria and arbuscular mycorrhizal fungi. This response involved activation of the proteins related to redox metabolism and suppression of excessive nodule formation. In turn, the low-responsive genotype k-3358 demonstrated a pronounced inoculation-induced suppression of protein metabolism and enhanced diverse defense reactions in pea roots under the same soil conditions. The results of the study shed light on the molecular basis of differential symbiotic responsivity in different pea cultivars.
Project description:Pea (Pisum. sativum L.) is a traditional and important edible legume that can be sorted into grain pea and vegetable pea according to their harvested maturely or not. Vegetable pea by eating the fresh seed is becoming more and more popular in recent years. These two type peas display huge variations of the taste and nutrition, but how seed development and nutrition accumulation of grain pea and vegetable pea and their differences at the molecular level remains poorly understood. To understand the genes and gene networks regulate seed development in grain pea and vegetable pea, high throughput RNA-Seq and bioinformatics analysis were used to compare the transcriptomes of vegetable pea and grain pea developing seed. RNA-Seq generated 18.7 G raw data, which was then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Functional annotation of the unigenes was carried out using the nr, Swiss-Prot, COG, GO and KEGG databases. There were 459 and 801 genes showing differentially expressed between vegetable pea and grain pea at early and late seed maturation phases, respectively. Sugar and starch metabolism related genes were dramatically activated during pea seed development. The up-regulated of starch biosynthesis genes could explain the increment of starch content in grain pea then vegetable pea; while up-regulation of sugar metabolism related genes in vegetable pea then grain pea should participate in sugar accumulation and associated with the increase in sweetness of vegetable pea then grain pea. Furthermore, transcription factors were implicated in the seed development regulation in grain pea and vegetable pea. Thus, our results constitute a foundation in support of future efforts for understanding the underlying mechanism that control pea seed development and also serve as a valuable resource for improved pea breeding.
Project description:Bacterial wilt caused by Ralstonia solanacearum is a lethal, soil-borne disease of tomato. Control of the disease with chemicals and crop rotation is insufficient, because the pathogen is particularly well adapted for surviving in the soil and rhizosphere. Therefore, cultivar resistance is the most effective means for controlling bacterial wilt, but the molecular mechanisms of resistance responses remain unclear. We used microarrays to obtain the characteristics of the gene expression changes that are induced by R. solanacearum infection in resistant cultivar LS-89 and susceptible cultivar Ponderosa.
Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:In angiosperms, the mature seed consists of an embryo (E), a seed coat (SC), and, in many cases, an endosperm. In contrast to knowledge about embryo and endosperm, we have relatively little knowledge of SC, especially at the genomics level. In this study, we analyzed the gene expression during seed development using the panel of cultivated and wild pea genotypes. We report the comprehensive gene expression changes related both to development as well as domestication status. Analysis of seed developmental stages revealed extensive modification of gene expression between wild pea progenitor and cultivated pea crop. A significant difference in gene expression dynamics appeared between early and late developmental stages D1, D2, and D3, D4, D5 in wild pea genotypes, where the expression was increased 3-5-fold and 5-10-fold, respectively. Our work extends knowledge about the role of the seed coat during pea seed development. We described gene expression dynamic resulting in specific metabolic profiles providing new insight into pea domestication.