Project description:Tenosynovial giant-cell tumor (TGCT) and pigmented villonodular synovitis (PVNS) are related conditions with features of both reactive inflammatory disorders and clonal neoplastic proliferations. Chromosomal translocations involving chromosome 1p13 have been reported in both TGCT and PVNS. We confirm that translocations involving 1p13 are present in a majority of cases of TGCT and PVNS and show that CSF1 is the gene at the chromosome 1p13 breakpoint. In some cases of both TGCT and PVNS, CSF1 is fused to COL6A3 (2q35). The CSF1 translocations result in overexpression of CSF1. In cases of TGCT and PVNS carrying this translocation, it is present in a minority of the intratumoral cells, leading to CSF1 expression only in these cells, whereas the majority of cells express CSF1R but not CSF1, suggesting a tumor-landscaping effect with aberrant CSF1 expression in the neoplastic cells, leading to the abnormal accumulation of nonneoplastic cells that form a tumorous mass.
Project description:Tenosynovial giant-cell tumor (TGCT) and pigmented villonodular synovitis (PVNS) are related conditions with features of both reactive inflammatory disorders and clonal neoplastic proliferations. Chromosomal translocations involving chromosome 1p13 have been reported in both TGCT and PVNS. We confirm that translocations involving 1p13 are present in a majority of cases of TGCT and PVNS and show that CSF1 is the gene at the chromosome 1p13 breakpoint. In some cases of both TGCT and PVNS, CSF1 is fused to COL6A3 (2q35). The CSF1 translocations result in overexpression of CSF1. In cases of TGCT and PVNS carrying this translocation, it is present in a minority of the intratumoral cells, leading to CSF1 expression only in these cells, whereas the majority of cells express CSF1R but not CSF1, suggesting a tumor-landscaping effect with aberrant CSF1 expression in the neoplastic cells, leading to the abnormal accumulation of nonneoplastic cells that form a tumorous mass. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Pigmented villonodular synovitis (PVNS) is a rare condition that involves benign proliferation of the synovial tissue and is characterized by severe joint destruction and high recurrence even after surgical resection. However, poor understanding of the pathogenesis limitsitseffective therapy.
Project description:Pigmented villonodular synovitis (PVNS) is a rare condition that involves benign proliferation of the synovial tissue and is characterized by severe joint destruction and high recurrence even after surgical resection. However, poor understanding of the pathogenesis limitsitseffective therapy.
Project description:Inflammation of synovial tissue (synovitis) is a hallmark of osteoarthritis (OA) pathogenesis and is pronounced in obese individuals. The aim of this study was therefore to perform scRNA-seq analysis of synovial fibroblast from hip OA patients who were either obese or normal-weight to identify specific fibroblast subsets that exhibit disease-associated inflammatory functions. : scRNA-seq identified eight OA synovial fibroblast clusters, with distinct differences between obese and normal-weight patients. Fibroblast clusters in obese OA patients highly expressed gene signatures related to immune cell regulation, fibrosis and inflammatory signalling, including Chitinase3-like 1 (CHI3L1), CXCL12, osteonectin (SPARC), SMOC2 and Galectin-1 (LGALS1). Pseudotemporal expression dynamics demonstrated a transition in the expression of the transcriptional regulator MYC and Inhibin A in normal-weight clusters, and the expression of FOS and CHI3L1 in obese fibroblast clusters. Analysis of fibroblast conditioned media showed that obese OA fibroblasts secreted significantly greater amounts of CHI3L1, whilst normal-weight fibroblasts secreted greater amounts of Inhibin.
Project description:Tenosynovial giant-cell tumor (TGCT) and pigmented villonodular synovitis (PVNS) are related conditions with features of both reactive inflammatory disorders and clonal neoplastic proliferations. Chromosomal translocations involving chromosome 1p13 have been reported in both TGCT and PVNS. We confirm that translocations involving 1p13 are present in a majority of cases of TGCT and PVNS and show that CSF1 is the gene at the chromosome 1p13 breakpoint. In some cases of both TGCT and PVNS, CSF1 is fused to COL6A3 (2q35). The CSF1 translocations result in overexpression of CSF1. In cases of TGCT and PVNS carrying this translocation, it is present in a minority of the intratumoral cells, leading to CSF1 expression only in these cells, whereas the majority of cells express CSF1R but not CSF1, suggesting a tumor-landscaping effect with aberrant CSF1 expression in the neoplastic cells, leading to the abnormal accumulation of nonneoplastic cells that form a tumorous mass. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Pigmented villonodular synovitis (PVNS) represents a rare group of lesions with morphological features suggesting an inflammatory as well as a neoplastic nature. Rheumatoid arthritis (RA) is characterized by a chronic inflammation of the synovial tissue and a tumor-like proliferation (TLP) of synovial stroma cells. Osteoarthritis (OA) shows modest inflammatory infiltrates and no TLP. All three diseases result in a progressive destruction of affected joints and remain a diagnostic difficulty because of nonspecific symptoms. This study aimed to identify molecular markers and genes correlated with the development of RA, OA, and PVNS using human whole genome cDNA microarrays and tissue samples obtained from knee surgery. Keywords: disease state analysis
Project description:Background: Synovial inflammation is associated with pain severity in patients with knee osteoarthritis (OA). The aim here was to determine in a population with knee OA, whether synovial tissue from areas associated with pain exhibited different synovial fibroblast transcriptomes, compared to synovial tissue from sites not associated with pain. A further aim was to compare differences between early and end-stage disease synovial fibroblasts. Methods: Patients with early knee OA (n=29) and end-stage knee OA (n=22) were recruited. Patient reported pain was recorded by questionnaire and using an anatomical knee pain map. Proton density fat suppressed MRI axial and sagittal sequences were analysed and scored for synovitis. Synovial tissue was obtained from the medial and lateral parapatellar and suprapatellar sites. RNA sequencing was performed using Illumina’s NextSeq 500 and analysed with Galaxy web platform, usegalaxy.org, and Qlucore software. Transcriptomes were functionally characterised using Ingenuity Pathway Analysis. Findings: Parapatellar synovitis was significantly associated with increased OA pain perception. Functional pathway analysis revealed that early OA painful sites mediate immune cell recruitment and promote the formation and development of neurites. Conclusion: OA disease progression and the presence of pain in early OA is associated with different synovial pathotypes. Further interrogation of these pathotypes will increase our understanding of the role of synovitis in OA joint pain and provide a rationale for the therapeutic targeting to alleviate pain in patients.
Project description:Synovial inflammation is associated with pain severity in patients with knee osteoarthritis (OA). The aim here was to determine in a population with knee OA, whether synovial tissue from areas associated with pain exhibited different synovial fibroblast subsets, compared to synovial tissue from sites not associated with pain. A further aim was to compare differences between early and end-stage disease synovial fibroblast subsets. Parapatellar synovitis was significantly associated with the pattern of patient-reported pain in knee OA patients. Synovial tissue from sites of patient-reported pain exhibited a differential transcriptomic phenotype, with distinct synovial fibroblast subsets in early OA and end-stage OA. Functional pathway analysis revealed that synovial tissue and fibroblast subsets from painful sites promoted fibrosis, inflammation and the growth and activity of neurons. The secretome of fibroblasts from early OA painful sites induced neurite outgrowth in dorsal root ganglion neurons. Sites of patient-reported pain in knee OA is associated with a different synovial tissue phenotype and distinct synovial fibroblast subsets. Further interrogation of these fibroblast pathotypes will increase our understanding of the role of synovitis in OA joint pain and provide a rationale for the therapeutic targeting of fibroblast subsets to alleviate pain in patients.