Project description:To determine microbiota composition associated with loss of KDM5 in intestine, we carried out 16S rRNA seq analyses of dissected intestine from wildtype and kdm5 mutant. [GSM2628181-GSM2628190]. A total of 78 operational taxonomic units (OTUs) were identified in the sequence data. There were about 15 genera much less abundant in kdm5 mutant compared to wildtype. The kdm5 mutant were sensitive to pathogen. To confirm the microbiota associated with loss of KDM5 in intestine, 16S rRNA of new flies were sequenced and analyzed by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) [GSM3243472-GSM3243481]. A total of 107 operational taxonomic units (OTUs) were identified in the sequence data. There were about 20 genera much less abundant in kdm5 mutant compared to wildtype. To confirm the microbiota associated with loss of KDM5 drosophila feeding with Lactobacillus plantarum, 16S rRNA of kdm5 mutant flies were sequenced and analyzed by Novogene Bioinformatics Technology Co., Ltd. (Tianjin, China) [GSM3263522-GSM3263527]. A total of 92 operational taxonomic units (OTUs) were identified in the sequence data. To confirm the microbiota associated with KDM5 knockdown in intestine, 16S rRNA of Myo1A-Gal4TS/+ and Myo1A-Gal4TS/+;+/kdm5RNAi flies were sequenced and analyzed by Biomarker Co. Ltd. (Beijing, China). [GSM3507915-GSM3507924]. A total of 50 operational taxonomic units (OTUs) were identified in the sequence data. There was a significant different based on the genus level between two groups.
Project description:Indole-3-acetic acid (IAA), knows as common plant hormone, is one of the most distributed indole derivatives in the environment. A novel strain, which was able to use IAA as sole source of carbon and nitrogen, was isolated from farm soil, identified and classified as Pseudomonas composti LY1 based on 16S rRNA sequence and genome analysis. The optimal growth conditions for LY1 with IAA are characterized. Proteome profile of strain LY1 to IAA and citrate were analyzed and compared using label free strategy with LC-MS/MS.
Project description:RNase E, an essential endoribonuclease in Escherichia coli, is the key component of the multienzyme RNA degradosome, which is localized to the inner cytoplasmic membrane. Until now, the reason for membrane localization of RNase E was not known. We have analyzed ribosome assembly in the rneΔMTS strain, which expresses a cytoplasmic variant of RNase E (cRNase E) resulting in a cytoplasmic RNA degradosome. In this mutant strain, there is a mild slowdown in the rates of growth and mRNA degradation. Here we document the striking accumulation of intermediates in ribosome assembly in the rneΔMTS strain in which precursors of 16S and 23S rRNA are cleaved by cRNase E. In vitro, we show that ribosomes partially unfolded in low ionic strength buffer are cleaved by RNase E. Mapping of in vivo and in vitro cleavage sites shows that they overlap and that their consensus sequence matches previously mapped RNase E cleavage sites. In vivo, fragments of 16S and 23S rRNA as well as a precursor of 5S rRNA are degraded in a pathway involving polyadenylation and 3’ exonucleases. Since the pathway for rRNA degradation is the same as the pathway for mRNA degradation, the slowdown of mRNA degradation in the rneΔMTS strain could be due to competition by rRNA degradation. Our results strongly suggest that the RNA degradosome participates in the quality control of ribosome assembly and that localization on the inner cytoplasmic membrane protects newly synthesized intermediates from wasteful degradation. Ribosome synthesis is costly. Since growth rate correlates with ribosome synthesis rate, slow growth rate of the rneΔMTS strain is due to the degradation of a proportion of newly synthesized ribosomes. Avoiding wasteful degradation of intermediates in ribosome assembly likely explains why localization of RNase E homologues to the inner cytoplasmic membrane is conserved throughout the γ-Proteobacteria.