Project description:To determine the cellular effect of iron oxide nanoparticles on MSC, we performed gene expression microarray assay to explore more intensive molecular basis.
Project description:Dissimilatory iron reduction by hyperthermophilic archaea occurs in many geothermal environments and generally relies on microbe-mineral interactions that transform various iron oxide minerals. In this study, the physiology of dissimilatory iron and nitrate reduction was examined in the hyperthermophilic crenarchaeon Pyrodictium delaneyi Su06T. Protein electrophoresis showed that the c-type cytochrome and general protein compositions of P. delaneyi changed when grown on ferrihydrite relative to nitrate. Differential proteomic analyses using tandem mass tagged protein fragments and mass spectrometry detected 660 proteins and differential production of 127 proteins. Among these, two putative membrane-bound molybdopterin-dependent oxidoreductase complexes increased in relative abundance 60- to 3,000-fold and 50-100-fold in cells grown on iron oxide. A putative 8-heme c-type cytochrome was 60-fold more abundant in iron grown cells and was unique to the Pyrodictiaceae. There was also a >14,700-fold increase in a membrane transport protein in iron grown cells. There were no changes in the abundances of flagellin proteins nor a putative nitrate reductase, but a membrane nitric oxide reductase was more abundant on nitrate. These data help to elucidate the mechanisms by which hyperthermophilic crenarchaea generate energy and transfer electrons across the membrane to iron oxide minerals.
Project description:The expression ovarian cancer cell line HeyA8 was studied when the cells were treated with MFH at 43˚C for 30 min, the iron oxide nanoparticles concentration was 0.5 mgFe/ml.
Project description:Magnetically-actuated iron oxide nanoparticles (MNP) have emerged as a technology to chronically expose axons of developing neurons to extremely low mechanical forces. This force was found to induce axon outgrowth. Axon-Seq has been performed to profile local gene expression in response to the stimulus.
2022-03-07 | GSE197808 | GEO
Project description:PFASs removal in iron oxide and FeRB based CWs
Project description:To identify differentially expressed genes and key biological pathways that define toxicity following nanomaterial exposure, we performed microarray analyses on NR8383 macrophages exposed for 4 h to 17 µg/mL of zinc iron oxide (ZnFe2O4, NRCWE021). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement N°. 686098
Project description:We compared the gene expression analysis of 2 different glomerular isolation techniques (laser capture microdissection with 2 rounds of RNA amplification and unamplified glomerular RNA after iron perfusion with glomerular sieving) and obtained different results depending on the glomerular isolation technique that was used Experiment Overall Design: Paired kidneys from Lewis-Hsd rat kidneys were collected. The glomeruli of one kidney was obtained by LCM with 2 rounds of RNA amplification while the unamplified glomerular RNA of the contralateral kidney was obtained after perfusion with iron oxide and isolated by magnetic purification and a glomerular sieving technique. The RNA was analyzed using the Affymetrix Rat 230A microarrays.
Project description:The goal of this study was to investigate the effects of magnetic iron cobalt oxide nanoparticles (cobalt doped Fe3O4 nanoparticles with increasing amounts of cobalt) after pulmonary exposure while in parallel presenting a proteomics platform that is easily transferable to large-scale nanotoxicology screening as part of an integrated assessment and testing approach for regulation of nanoparticles. Bronchoalveolar lavage fluid (BALF) is a proximal biofluid that can be used to monitor airway inflammation and toxic responses in the lung. It is routinely sampled for differential lung diagnostics and has been discussed as a source for early detection of lung cancer. In order to assess effects of metal oxide nanoparticles upon inhalation, bronchoalveolar lavage fluid from mice dosed by single intratracheal instillation was collected and subjected to classical biocompatibility assays as well as proteome analysis. Magnetic oxide nanoparticles with iron and cobalt oxide (Fe3-xCoxO4) at different ratios (1:0, 3:1, 1:1, 1:3, 0:1) were tested at two concentrations (54 µg, 162 µg per animal) and two time points after instillation (day 1, day 3). As a positive control carbon black nanomaterial known to induce lung inflammation was included for both time points, but only at the high dosage (162 µg per animal). Proteomics experiments were divided into three parts – test of reproducibility, discovery and screening phase. The reproducibility of the newly introduced Evosep One LC system was evaluated by re-measuring of technical replicates (n=16). During the discovery phase, selected representative samples with 3 biological replicates per group (total n=9) including pure iron oxide nanoparticles, pure cobalt oxide nanoparticles and vehicle controls were subjected to in-depth proteome profiling by extensive pre-fractionation and including isobaric tandem mass tag (TMT) labeling following a classical LC-MS/MS setup. This step allowed us to identify affected pathways and generate hypotheses regarding mechanisms of the effects of nanoparticles. During screening, all samples of the study were measured label-free as single-shot injections separated on short gradients of 21 min using the robust, high-throughput Evosep One LC system. This step allowed a fast screening of the 5 different types of magnetic metal oxide nanoparticles on BALF, at two concentrations and two time points together with their representative controls (total n=166). All screening measurements were completed in only 2.7 days.