Project description:Purpose: The goals of this study are to compare 1. The transcription profile in KDM6A wildtype and KDM6A mutated urothelial bladder carcinoma. 2. The transcriptional changes in KDM6A mutated urothelial bladder carcinoma upon EZH2 inhibitor treatment.
Project description:Genome-wide studies characterizing mutational landscape of bladder cancer revealed the exceptionally high rate of chromatin modifier genes in bladder cancer. Thus, epigenetic deregulation is a critical theme which needs further investigation for bladder cancer research. One of the highly mutated genes in bladder cancer is KDM6A, functioning as H3K27 demethylase and part of MLL3/4 complexes. To decipher the role of KDM6A in normal vs tumor setting, we identified the genomic localization profiles of KDM6A in normal, immortalized and cancer bladder cells. Our results showed differential occupancy of KDM6A at the genes involved in cell differentiation, chromatin organization and Notch signaling depending on the cell type and the mutation status of KDM6A. Transcription factor motif analysis revealed an enrichment for HES1 for the KDM6A peaks identified for T24 bladder cancer cell line, which has a truncating mutation in KDM6A and lacking demethylase domain and also for the other clusters showing KDM6A localization. For the first time, using co-immunoprecipitation experiments, we show that KDM6A is in complex with TLE co-repressors and HES1, and illustrate the potential interaction of KDM6A with TLE co-repressors, HES1, RUNX, HHEX transcription factors by computational structural biology models. Our work makes important contributions to the understanding of KDM6A malfunction in bladder cancer and provides models for the functioning of KDM6A independent of its demethylase activity.
Project description:The UTX/KDM6A gene encodes the UTX histone H3K27 demethylase, which plays an important role in mammalian development and is frequently mutated in cancers and particularly, in urothelial cancers. Using BioID technique, we explored the interactome of different UTX isoforms.
Project description:Given the heterogeneity of disease evident from study of the presentation, histomorphology, disease course, and molecular lesions of bladder cancer, a cohort of 8 non-muscle invasive and 11 muscle invasive bladder cancers were profiled for gene expression using the Affymetrix HG-U133A platform. Under an IRB-approved protocol, snap frozen tissues for 19 cases of bladder cancer were procured and profiled for gene expression using Affymetrix HG-U133A microarrays.
Project description:Massive parallel sequencing projects identified KDM6A as a tumor suppressor gene with recurrent loss-of-function mutations multiple cancers. However, in breast cancer, reports on the functional role of KDM6A is paradoxical or even puzzling, suggesting the role of KDM6A may be context dependent. We sought to investigate the functional role of KDM6A in triple negative breast cancer with using MCF10A cells.
Project description:Given the heterogeneity of disease evident from study of the presentation, histomorphology, disease course, and molecular lesions of bladder cancer, a cohort of 8 non-muscle invasive and 11 muscle invasive bladder cancers were profiled for gene expression using the Affymetrix HG-U133A platform.
Project description:Although the intravesical instillation of Bacillus Calmette-Guerin (BCG) is widely used as adjuvant treatment for nonmuscle-invasive bladder cancers, the clinical benefit is variable across patients, and the molecular mechanisms underlying the sensitivity to BCG administration and disease progression are poorly understood. To establish the molecular signatures that predict the responsiveness and disease progression of bladder cancers treated with BCG, we performed transcriptome sequencing (RNA-seq) for 13 treatment-naïve and 22 post-treatment specimens obtained from 14 bladder cancer patients. To overcome disease heterogeneity, we used non-negative matrix factorization to identify the latent molecular features associated with drug responsiveness and disease progression. At least 12 molecular features were present, among which the immune-related feature was associated with drug responsiveness, indicating that pre-treatment anti-cancer immunity might dictate BCG responsiveness. We also identified disease progression-associated molecular features indicative of elevated cellular proliferation in post-treatment specimens. The progression-associated molecular features were validated in an extended cohort of BCG-treated bladder cancers. Our study advances understanding of the molecular mechanisms of BCG activity in bladder cancers and provides clinically relevant gene markers for evaluating and monitoring patients.
Project description:Large-scale genome sequencing efforts of human tumors identified epigenetic modifiers as one of the most frequently mutated gene class in human cancer. However, how these mutations drive tumor development and progression is largely unknown. Here, we identify the histone demethylase KDM6A as an important tumor suppressor in solid cancers, such as liver cancer and pancreatic cancer. KDM6A-deficient tumors show hyperactivation of mTORC1 signaling, whereas endogenous KDM6A re-expression in established KDM6A-deficient tumors diminishes mTORC1 activity by fostering the expression of crucial negative pathway regulators, such as DEPTOR, TSC1, and TSC2, resulting in tumor regression. Importantly, KDM6A expression in human tumors correlates with mTORC1 activity and KDM6A-deficient tumors exhibit increased sensitivity to mTORC1 inhibition. Hence, our results link KDM6A-dependent epigenetic remodeling to mTORC1 signaling and provide a potential therapeutic strategy for KDM6A-deficient tumors.
Project description:Bladder cancer prognosis is closely linked to the underlying differentiation state of the tumor, ranging from the less aggressive and most differentiated luminal tumors to the more aggressive and least differentiated basal tumors. Sequencing of bladder cancer has revealed that loss-of-function mutations in chromatin regulators and mutations that activate receptor tyrosine kinase (RTK) signaling frequently occur in bladder cancer. However, little is known as to whether and how these two types of mutations functionally interact or cooperate to regulate tumor growth and differentiation state. Here, we focus on loss of the histone demethylase UTX (also known as KDM6A) and activation of the RTK FGFR3, two events that commonly co-occur in muscle invasive bladder tumors. We show that UTX loss and FGFR3 activation cooperate to disrupt the balance of luminal and basal gene expression in bladder cells. UTX localized to enhancers surrounding many genes that are important for luminal cell fate, and supported the transcription of these genes in a catalytic-independent manner. In contrast to UTX, FGFR3 activation was associated with lower expression of luminal genes in tumors and FGFR inhibition increased transcription of these same genes in cell culture models. This suggests an antagonistic relationship between UTX and FGFR3. In support of this model, UTX loss-of-function potentiated FGFR3-dependent transcriptional effects and the presence of UTX blocked an FGFR3-mediated increase in the colony formation of bladder cells. Taken together, our study reveals how mutations in UTX and FGFR3 converge to disrupt bladder differentiation programs that could serve as a therapeutic target.