Project description:We analyzed the extracellular proteome of colistin-resistant Korean Acinetobacter baumannii (KAB) strains to identify proteome profiles that can be used to characterize extensively drug-resistant KAB strains.
Project description:RNA sequencing was carried out by ARK genomics, Edinburgh on an Illumina HiSeq platform to compare gene expression in Acinetobacter baumannii strain AYE and an adeRS deletion mutant in this strain.
Project description:Petroleum hydrocarbons are recalcitrant contaminants, which has caused most serious environmental problems. Acinetobacter calcoaceticus Aca13 was isolated from petroleum polluted soil for petroleum biodegradation. Hexadecane and naphthalene were used to incubate with Acinetobacter calcoaceticus Aca13. After incubation, the whole transcriptome was obtained from treated groups and control groups, and then used for RNA sequence and analysis. Obtained data in this project will help us understand the biodegradation mechanism of hexadecane and naphthalene, and will be helpful for the bioremediation of petroleum hydrocarbons.
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Acinetobacter baumannii causes high mortality in ventilator-associated pneumonia patients and antibiotic treatment is compromised in multi-drug resistant strains resistant to beta-lactams, carbapenems, cephalosporins, polymyxins and tetracyclines. Among COVID-19 patients receiving ventilator support, multi-drug resistant A. baumannii secondary infection is associated with a two-fold increase in mortality. Here we investigated the use of the 8-hydroxyquinoline ionophore PBT2 to break resistance of A. baumannii to tetracycline class antibiotics.
Project description:The bacterial pathogen, Acinetobacter baumannii, is a leading cause of drug-resistant infections. Here, we investigated the potential of developing nanobodies that specifically recognize A. baumannii over other Gram-negative bacteria. Through generation and panning of a synthetic nanobody library, we identified several potential lead candidates. We demonstrate how incorporation of next generation sequencing analysis can aid in selection of lead candidates for further characterization. Using monoclonal phage display, we validated the binding of several lead nanobodies to A. baumannii. Subsequent purification and biochemical characterization revealed one particularly robust nanobody that broadly and specifically bound A. baumannii compared to other common drug resistant pathogens. These findings support the potentially for nanobodies to selectively target A. baumannii and the identification of lead candidates for possible future diagnostic and therapeutic development.
Project description:Purpose: The goal of this study was to elucidate the collateral effects associated with OXA-23 overexpression on the Acinetobacter baumannii global transcriptome. Results: Besides the 99.73-fold increase in blaOXA-23 transcript upon IPTG induction, no other transcripts showed more than a 2-fold change compared to the wildtype control. This suggests that OXA-23 over expression to levels similarly observed in multi drug resistant A. baumannii clinical isolates does not effect the transcriptome.